DOI QR코드

DOI QR Code

Pole-placement based active damping algorithm in current controllers with LCL-filtered power converters

  • Received : 2022.10.25
  • Accepted : 2023.04.26
  • Published : 2023.10.20

Abstract

In this paper, a novel active damping technique is proposed that can be applied in AC power converters with LCL filters. Active damping is performed in the discrete domain based on a single measurement of the output LCL filter current. The parameter tuning procedure, which is based on pole-placement, is applied in a new active damping structure. This simplifies the design of the cascaded control loop, which is superimposed onto the inner loop with the active damping, which results in improved controller dynamics and robustness. The proposed active damping method is applied with the cascaded-output current controller main loop of an AC power converter with a resonant LCL filter. The dynamic performance and robustness of the novel active damping method are analyzed through a series of simulation and experimental tests. Simulation and experimental results show that proposed active damping technique enables successful and effective decoupling of the local active damping and the main control loop design.

Keywords

Acknowledgement

This work was financially supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia under contract number: 451-03-47/2023-01/200103.

References

  1. Bose, B.K.: Power electronics, smart grid, and renewable energy systems. Proc IEEE. 105(11), 2011-2018 (2017)  https://doi.org/10.1109/JPROC.2017.2745621
  2. Zheng, X., Xiao, L., Lei, Y., Wang, Z.: Optimisation of LCL filter based on closed-loop total harmonic distortion calculation model of the grid-connected inverter. IET Power Electron. 8(6), 860-868 (2015)  https://doi.org/10.1049/iet-pel.2014.0651
  3. Yagnik, U. P., Solanki, M.D.: Comparison of L, LC & LCL filter for grid connected converter. In 2017 International Conference on Trends in Electronics and Informatics (ICEI). Tirunelveli, India, pp 455-458 (2017) 
  4. Jinming, X., Shaojun, X.: LCL-resonance damping strategies for grid-connected inverters with LCL filters: a comprehensive review. J Mod Power Syst Clean Energy. 6(2), 292-305 (2018)  https://doi.org/10.1007/s40565-017-0319-7
  5. Beres, R.N., Wang, X., Liserre, M., Blaabjerg, F., Bak, C.L.: A review of passive power filters for three-phase grid-connected voltage-source converters. IEEE J Emerg Sel Topics Power Electron. 4(1), 54-69 (2015)  https://doi.org/10.1109/JESTPE.2015.2507203
  6. Guo, X.-Q., Wu, W.-Y., Gu, H.-R.: Modeling and simulation of direct output current control for LCL-interfaced grid-connected inverters with parallel passive damping. Simul Model Pract Theory. 18(7), 946-956 (2010)  https://doi.org/10.1016/j.simpat.2010.02.010
  7. Pena-Alzola, R., Liserre, M., Blaabjerg, F., Sebastian, R., Dannehl, J., Fuchs, F.W.: Analysis of the passive damping losses in LCL-filter-based grid converters. IEEE Trans Power Electron. 28(6), 2642-2646 (2012)  https://doi.org/10.1109/TPEL.2012.2222931
  8. Han, Y., et al.: Modeling and stability analysis of LCL-type grid-connected inverters: a comprehensive overview. IEEE Access. 7, 114975-115001 (2019)  https://doi.org/10.1109/ACCESS.2019.2935806
  9. Dannehl, J., Liserre, M., Fuchs, F.W.: Filter-based active damping of voltage source converters with LCL filter. IEEE Trans Ind Electron. 58(8), 3623-3633 (2010)  https://doi.org/10.1109/TIE.2010.2081952
  10. Dahono, P. A.: A control method to damp oscillation in the input LC flter.In 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No. 02CH37289), vol 4. QLD, Australia, pp 1630-1635 (2002) 
  11. Roldan-Perez, J., Bueno, E.J., Pena-Alzola, R., Rodriguez-Cabero, A.: All-pass-filter-based active damping for VSCs with LCL filters connected to weak grids. IEEE Trans Power Electron. 33(11), 9890-9901 (2018)  https://doi.org/10.1109/TPEL.2017.2789218
  12. Bao, C., Ruan, X., Wang, X., Li, W., Pan, D., Weng, K.: Step-by-step controller design for LCL-type grid-connected inverter with capacitor-current-feedback active-damping. IEEE Trans Power Electron. 29(3), 1239-1253 (2013) 
  13. Pena-Alzola, R., Liserre, M., Blaabjerg, F., Sebastian, R., Dannehl, J., Fuchs, F.W.: Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters. IEEE Trans Ind Inform. 10(1), 43-52 (2013)  https://doi.org/10.1109/TII.2013.2263506
  14. Guan, Y., Wang, Y., Xie, Y., Liang, Y., Lin, A., Wang, X.: The dual-current control strategy of grid-connected inverter with LCL filter. IEEE Trans Power Electron. 34(6), 5940-5952 (2018)  https://doi.org/10.1109/TPEL.2018.2869625
  15. Xu, J., Xie, S., Tang, T.: Active damping-based control for grid-connected LCL-filtered inverter with injected grid current feedback only. IEEE Trans Ind Electron. 61(9), 4746-4758 (2013)  https://doi.org/10.1109/TIE.2013.2290771
  16. Miskovic, V., Blasko, V., Jahns, T.M., Smith, A.H., Romenesko, C.: Observer-based active damping of LCL resonance in grid-connected voltage source converters. IEEE Trans Ind Appl. 50(6), 3977-3985 (2014)  https://doi.org/10.1109/TIA.2014.2317849
  17. Husev, O., Roncero-Clemente, C., Makovenko, E., Pimentel, S.P., Vinnikov, D., Martins, J.: Optimization and implementation of the proportional-resonant controller for grid-connected inverter with significant computation delay. IEEE Trans Ind Electron. 67(2), 1201-1211 (2019)  https://doi.org/10.1109/TIE.2019.2898616
  18. Nussbaumer, T., Heldwein, M.L., Gong, G., Round, S.D., Kolar, J.W.: Comparison of prediction techniques to compensate time delays caused by digital control of a three-phase buck-type PWM rectifier system. IEEE Trans Ind Electron. 55(2), 791-799 (2008)  https://doi.org/10.1109/TIE.2007.909061
  19. Xin, Z., Wang, X., Loh, P.C., Blaabjerg, F.: Grid-current-feedback control for LCL-filtered grid converters with enhanced stability,". IEEE Trans. Power Electron. 32(4), 3216-3228 (2016)  https://doi.org/10.1109/TPEL.2016.2580543
  20. Li, X., Wu, X., Geng, Y., Yuan, X., Xia, C., Zhang, X.: Wide damping region for LCL-type grid-connected inverter with an improved capacitor-current-feedback method. IEEE Trans Power Electron. 30(9), 5247-5259 (2014)  https://doi.org/10.1109/TPEL.2014.2364897
  21. Chen, C., Xiong, J., Wan, Z., Lei, J., Zhang, K.: A time delay compensation method based on area equivalence for active damping of an LCL-type converter. IEEE Trans Power Electron. 32(1), 762-772 (2016)  https://doi.org/10.1109/TPEL.2016.2531183
  22. Ali, A., Vasquez, J., Guerrero, J.: A simple method for passivity enhancement of current controlled grid-connected inverters. IEEE Trans. Power Electron. 35(8), 7735-7741 (2020)  https://doi.org/10.1109/TPEL.2020.2967239
  23. Ali, A., et al.: Passivity enhancement of voltage-controlled inverters in grid-connected microgrids considering negative aspects of control delay and grid impedance variations. IEEE J Emerg Sel Topics Power Electron. 9(6), 6637-6649 (2021)  https://doi.org/10.1109/JESTPE.2021.3065671
  24. Hao, Z., et al.: A compensation method to eliminate the impact of time delay on capacitor-current active damping. IEEE Trans Ind Electron. 69(7), 7512-7516 (2021) 
  25. Ali, A., et al.: Stability enhancement of inverters in grid-connected microgrids using FIR filter,". IEEE J Emerg Sel Topics Ind Electron. 2(2), 122-131 (2020) 
  26. Samanes, J., Urtasun, A., Gubia, E., Petri, A.: Robust multisampled capacitor voltage active damping for grid-connected power converters. Int J Electr Power Energy Syst. 105, 741-752 (2019)  https://doi.org/10.1016/j.ijepes.2018.09.014
  27. Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter. IEEE Trans Power Electron. 29(7), 3414-3427 (2013)  https://doi.org/10.1109/TPEL.2013.2279206
  28. Li, X., Fang, J., Tang, Y., Wu, X., Geng, Y.: Capacitor-voltage feedforward with full delay compensation to improve weak grids adaptability of LCL-filtered grid-connected converters for distributed generation systems. IEEE Trans Power Electron. 33(1), 749-764 (2017)  https://doi.org/10.1109/TPEL.2017.2665483
  29. Yang, D., Ruan, X., Wu, H.: A real-time computation method with dual sampling mode to improve the current control performance of the LCL-type grid-connected inverter. IEEE Trans. Industr. Electron. 62(7), 4563-4572 (2014)  https://doi.org/10.1109/TIE.2014.2327575
  30. Yang, D., Xinbo, R., Heng, W.: A real-time computation method with dual sampling mode to improve the current control performance of the LCL -type grid-connected inverter. IEEE Trans. Industr. Electron. 62(7), 4563-4572 (2014)  https://doi.org/10.1109/TIE.2014.2327575
  31. Moin, H., et al.: Two degrees of freedom active damping technique for LCL filter-based grid connected PV systems. IEEE Trans Ind Electron. 61(6), 2795-2803 (2013) 
  32. Astrom, K.J., Murray, R.M.: Feedback systems: an introduction for scientists and engineers. Princeton University Press, Princeton (2010)