DOI QR코드

DOI QR Code

Robust battery state-of-charge estimation with improved convergence rate based on applying Busse's adaptive rule to extended Kalman filters

  • Wen Yao Low (Power Electronics and Drives Research Group, School of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • Mohd Junaidi Abdul Aziz (Power Electronics and Drives Research Group, School of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • Nik Rumzi Nik Idris (Power Electronics and Drives Research Group, School of Electrical Engineering, Universiti Teknologi Malaysia) ;
  • Nor Akmal Rai (Power Electronics and Drives Research Group, School of Electrical Engineering, Universiti Teknologi Malaysia)
  • 투고 : 2023.01.08
  • 심사 : 2023.05.16
  • 발행 : 2023.10.20

초록

The extended Kalman filter (EKF) has been widely used to estimate the state-of-charge (SoC) of batteries over the past decade. Battery SoC estimation with the EKF is initialized without knowing the true value of the SoC. Thus, it requires a fast convergence rate to provide users with an accurate SoC value in the shortest time. Applying an adaptive rule into the EKF is an unfussy way to improve both the accuracy and convergence rate of SoC estimation. However, an adaptive rule requires additional calculations and consumes additional memory space to store the learning history. This paper applies Busse's adaptive rule to improve the accuracy and convergence rate of EKF battery SoC estimation. Experimental data from a lithium titanate battery is applied to examine the battery SoC estimation with EKF, covariance-matching adaptive EKF (CM-AEKF), and Busse's adaptive EKF (Busse-AEKF) algorithms. The findings showed that the Busse-AEKF method has the shortest convergence time with an accuracy that is comparable to that of the CM-AEKF method. After the SoC value is converged, the algorithm gives estimation accuracy of a 1.42% root-mean-square error (RMSE) and a 3.15% of maximum error. In addition, Busse's AEKF does not require a large memory space to operate. Thus, it is a promising solution for battery SoC estimation.

키워드

과제정보

The authors are thankful for the financial support through The Ministry of Higher Education under Universiti Teknologi Malaysia for UTM Encouragement Grant with vote number of Q.J130000.3851.20J63.

참고문헌

  1. Farmann, A., Waag, W., Marongiu, A., Sauer, D.U.: Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles. J. Power Sources 281, 114-130 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.129 
  2. Yang, B., et al.: Classification, summarization and perspectives on state-of-charge estimation of lithium-ion batteries used in electric vehicles: a critical comprehensive survey. J. Energy Storage 39, 1072 (2021). https://doi.org/10.1016/j.est.2021.102572 
  3. Xu, W., Xu, J., Yan, X.: Lithium-ion battery state of charge and parameters joint estimation using cubature Kalman filter and particle filter. J. Power Electron. 20(1), 292-307 (2020). https://doi.org/10.1007/s43236-019-00023-4 
  4. Li, Y., Wei, Z., Xiong, B., Vilathgamuwa, D.M.: Adaptive ensemble-based electrochemical-thermal degradation state estimation of lithium-ion batteries. IEEE Trans. Ind. Electron. 69(7), 6984-6996 (2022). https://doi.org/10.1109/TIE.2021.3095815 
  5. Li, Y., Xiong, B., Vilathgamuwa, D.M., Wei, Z., Xie, C., Zou, C.: Constrained ensemble Kalman filter for distributed electrochemical state estimation of lithium-ion batteries. IEEE Trans. Ind. Informatics 17(1), 240-250 (2021). https://doi.org/10.1109/TII.2020.2974907 
  6. Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 1. Background. J. Power Sources 134(2), 252-261 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.031 
  7. Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 2. Modeling and identification. J. Power Sources 134(2), 262-276 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.032 
  8. Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. state and parameter estimation. J. Power Sources 134(2), 277-292 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.033 
  9. Zhang, F., Yin, L., Kang, J.: Enhancing stability and robustness of state-of-charge estimation for lithium-ion batteries by using improved adaptive Kalman filter algorithms. Energies (2021). https://doi.org/10.3390/en14196284 
  10. Xiong, R., He, H., Sun, F., Zhao, K.: Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach. IEEE Trans. Veh. Technol. 62(1), 108-117 (2013). https://doi.org/10.1109/TVT.2012.2222684 
  11. Charkhgard, M., Farrokhi, M.: State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans. Ind. Electron. 57(12), 4178-4187 (2010). https://doi.org/10.1109/TIE.2010.2043035 
  12. Xiong, R., Gong, X., Mi, C.C., Sun, F.: A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter. J. Power Sources 243, 805-816 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.076 
  13. Plett, G.L.: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 1: introduction and state estimation. J. Power Sources 161(2), 1356-1368 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.003 
  14. Plett, G.L.: Sigma-point kalman filtering for battery management systems of lipb-based hev battery packs: part 2: simultaneous state and parameter estimation. J. Power Sources 161(2), 1369-1384 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.004 
  15. Yao, L.W., Aziz, J.A., Idris, N.R.N.: State-of-charge estimation for lithium-ion battery using Busse's adaptive unscented Kalman filter. IEE Conf. Energy Convers. (2016). https://doi.org/10.1109/CENCON.2015.7409544 
  16. Sun, F., Hu, X., Zou, Y., Li, S.: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 36(5), 3531-3540 (2011). https://doi.org/10.1016/j.energy.2011.03.059 
  17. Ouyang, Q., Ma, R., Wu, Z., Xu, G., Wang, Z.: Adaptive square-root unscented Kalman filter-based state-of-charge estimation for lithium-ion batteries with model parameter online identification. Energies (2020). https://doi.org/10.3390/en13184968 
  18. Zhang, C., Yan, F., Du, C., Rizzoni, G.: An improved model-based self-adaptive filter for online state-of-charge estimation of Li-Ion batteries. Appl. Sci. (2018). https://doi.org/10.3390/app8112084 
  19. Zhou, W., Hou, J.: A new adaptive robust unscented Kalman filter for improving the accuracy of target tracking. IEEE Access 7, 77476-77489 (2019). https://doi.org/10.1109/ACCESS.2019.2921794 
  20. Song, Q.: An adaptive UKF algorithm for the state parameter estimations of a mobile robot. Acta Autom. Sin. (2008). https://doi.org/10.3724/SP.J.1004.2008.00072 
  21. Shi, Y., Han, C., Liang, Y.: Adaptive UKF for target tracking with unknown process noise statistics. Inf. Fusion 2009(1), 1815-1820 (2009) 
  22. Mohamed, A., Schwarz, K.: Adaptive Kalman filtering for INS/GPS. J. Geod. 73, 193-203 (1999). https://doi.org/10.1007/s001900050236 
  23. Sun, F., Xiong, R., He, H.: A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique. Appl. Energy 162, 1399-1409 (2016). https://doi.org/10.1016/j.apenergy.2014.12.021 
  24. Busse, F., How, J., Simpson, J.: Demonstration of adaptive extended kalman filter for low earth orbit formation estimation using CDGPS. Navigation 50(2), 1-12 (2003). https://doi.org/10.1002/j.2161-4296.2003.tb00320.x/abstract 
  25. Plett, G.: Battery management systems, volume II: equivalent-circuit methods. Artech 111-112 (2015)