DOI QR코드

DOI QR Code

Robust H∞ controller based on linear matrix inequalities for grid-connected inverters in weak grids

  • Fanqing Zhou (School of Electrical and Information Engineering, Tianjin University) ;
  • Donghui Li (School of Electrical and Information Engineering, Tianjin University) ;
  • Ningyi Liang (School of Electrical and Information Engineering, Tianjin University)
  • Received : 2022.12.03
  • Accepted : 2023.05.09
  • Published : 2023.10.20

Abstract

The problems of grid impedance fluctuations and harmonic interference exist widely in grid-connected inverter systems in a weak grid. A robust H∞ control strategy based on linear matrix inequalities (LMIs) is proposed to solve these problems. The proposed strategy improves the adaptation of inverters to a weak grid and the quality of the grid output current. First, an LCL-type grid-connected inverter model with a resonant controller is established. A reduced-order generalized integrator ensures zero-error tracking of grid current and grid harmonics suppression in the resonant controller. The inverter model, delayed session and resonant controller model are integrated into a polytopic model that describes an uncertain system. Then, a robust H∞ controller is designed to control the integrated polytopic uncertainty model based on LMIs. A suitable optimization condition is designed for the controller gain to avoid violent oscillations of the system. Finally, a hardware-in-the-loop experiment is performed to validate the effectiveness of the suggested approach.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (61873180).

References

  1. Zhou, J., Xu, S., Shao, R., Chang, L.: Predictive current controller and compensator-based discrete current controller for single-phase bridge inverters. J. Power Electron. 22(9), 1427-1437 (2022) https://doi.org/10.1007/s43236-022-00444-8
  2. Perdana, Y.S., Muyeen, S.M., Al-Durra, A., Morales-Paredes, H.K., Simoes, M.G.: Direct connection of supercapacitor-battery hybrid storage system to the grid-tied photovoltaic system. IEEE Trans. Sustain. Energy. 10(3), 1370-1379 (2019) https://doi.org/10.1109/TSTE.2018.2868073
  3. He, S., Xiong, J.: Time delay compensation based on newton interpolation for inverter-side current feedback of LCL-type grid-tied inverter. Power Syst. Technol. 44(12), 4766-4772 (2020)
  4. Xue, R., Li, G., Tong, H., Chen, Y.: Adaptive active damping method of grid-connected inverter based on model predictive control in weak grid. J. Power Electron. 22(7), 1100-1111 (2022) https://doi.org/10.1007/s43236-022-00419-9
  5. Zhang, Z., Wang, P., Jiang, P., Gao, F., Fu, L., Liu, Z.: Robust control method of grid-connected inverters with enhanced current quality while connected to a weak power grid. IEEE Trans. Power Electron. 37(6), 7263-7274 (2022)
  6. Kumar, N., Hussain, I., Singh, B., Panigrahi, B.K.: Implementation of multilayer fifth-order generalized integrator-based adaptive control for grid-tied solar PV energy conversion system. IEEE Trans. Ind. Inform. 14(7), 2857-2868 (2018) https://doi.org/10.1109/TII.2017.2777882
  7. Li, M., Xiao, H., Cheng, M.: An adaptive strategy based on repetitive predictive control for improving adaptability of LCL-type grid-connected inverters under weak grid. IEEE Trans. Power Electron. 37(3), 2562-2572 (2022) https://doi.org/10.1109/TPEL.2021.3108878
  8. Liu, J., Sun, X., Ren, B., Song, W., Wheeler, P.: Strong adaptability control based on dual-division-summation current control for an LCL-type grid-connected inverter. IEEE Trans. Power Electron. 37(12), 14157-14172 (2022) https://doi.org/10.1109/TPEL.2022.3188562
  9. Xie, Z., Chen, Y., Wu, W., Gong, W., Zhou, L., Zhou, X., Guerrero, J.M.: Admittance modeling and stability analysis of grid-connected inverter with LADRC-PLL. IEEE Trans. Ind. Electron. 68(12), 12272-12284 (2021) https://doi.org/10.1109/TIE.2020.3044789
  10. Zhou, X., Wang, J., Ma, Y.: Linear active disturbance rejection control of grid-connected photovoltaic inverter based on deviation control principle. Energies 13(15), 3790 (2020)
  11. Tran, T.V., Kim, K.H., Lai, J.S.: H2/H robust observed-state feedback control based on slack LMI-LQR for LCL-filtered inverters. IEEE Trans. Ind. Electron. (2022). https://doi.org/10.1109/TIE.2022.3187588
  12. Doyle, J., Glover, K., Khargonekar, P., Francis, B: State-space solutions to standard and control problems. In: Proceedings of IEEE American Control Conference, pp. 1691-1696 (1989)
  13. Feron, E., Apkarian, P., Gahinet, P.: Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions. IEEE Trans. Autom. Control 41(7), 1041-1046 (1996) https://doi.org/10.1109/9.508913
  14. Yan, B., Huang, H., Wang, H.: Robust phase-shifted model predictive control for cascaded H-bridge power supplies using linear matrix inequality. J. Power Electron. 22(9), 1496-1507 (2022) https://doi.org/10.1007/s43236-022-00459-1
  15. Jia, Y., Liu, C.: An LMI approach to robust guarantee cost control for LLCL-filtered Inverters connected to a weak grid. In: Proceedings of the IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1-6 (2018)
  16. Wang, Y., Jia, Y., Yan, X.: LMI-based direct grid current robust guaranteed cost control of grid-connected inverters with LCL filters for weak grid. In: Proceedings of the IEEE International Power Electronics and Motion Control Conference, pp. 719-724 (2016)
  17. Maccari, L.A., Massing, J.R., Schuch, L., Rech, C., Pinheiro, H., Oliveira, R.C., Montagner, V.F.: LMI-based control for grid-connected converters with LCL filters under uncertain parameters. IEEE Trans. Power Electron. 29(7), 3776-3785 (2014) https://doi.org/10.1109/TPEL.2013.2279015
  18. Montero, M.I.M., Cadaval, E.R., Gonzalez, F.B.: Comparison of control strategies for shunt active power filters in three-phase four-wire systems. IEEE Trans. Power Electron. 22(1), 229-236 (2007) https://doi.org/10.1109/TPEL.2006.886616
  19. Zmood, D.N., Holmes, D.G.: Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Trans. Power Electron. 18(3), 814-822 (2003)
  20. Busada, C.A., Jorge, S.G., Leon, A.E., Solsona, J.A.: Current controller based on reduced order generalized integrators for distributed generation systems. IEEE Trans. Ind. Electron. 59(7), 2898-2909 (2012) https://doi.org/10.1109/TIE.2011.2167892
  21. Xie, B., Zhou, L., Liu, T., Mao, M.: Harmonic resonance analysis and stability improvement for grid-connected inverters. J. Power Electron. 20(1), 221-235 (2020) https://doi.org/10.1007/s43236-019-00022-5
  22. Li, H., Ding, X., Xue, R., Li, G., Chen, Y.: Active damping adaptive controller for grid-connected inverter under weak grid. IEEE Access 9, 132442-132454 (2021) https://doi.org/10.1109/ACCESS.2021.3115493
  23. Wang, J., Xu, F., Pan, G., Ouyang, K., Jin, Y., Jin, L., Qiu, J.: Roubst control method for LCL-type shunt active power filter under weak grid condition. IET Gener. Transm. Distrib. 14(11), 2120-2128 (2020) https://doi.org/10.1049/iet-gtd.2019.1381
  24. Tran, T.V., Kim, K.H.: Frequency adaptive grid voltage sensor-less control of LCL-filtered inverter based on extended model observer. IEEE Trans. Ind. Electron. 67(9), 7560-7573 (2020) https://doi.org/10.1109/TIE.2019.2944075
  25. Kong, X., Wang, J., Peng, L., Kang, Y., Cheng, J.: The control technique of three-phase voltage-source inverter output waveform based on internal model theory. In: Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, pp. 788-793 (2003)
  26. Yang, J.Q., Yang, L., Su, Z.P.: A hybrid static compensator for dynamic reactive power compensate-on and harmonic suppression. J. Power Electron. 17(3), 798-810 (2017) https://doi.org/10.6113/JPE.2017.17.3.798
  27. Gomez Jorge, S., Busada, C.A., Solsona, J.: Reduced order generalized integrator-based current controller applied to shunt active power flters. IET Power Electron. 7(5), 1083-1091 (2014) https://doi.org/10.1049/iet-pel.2013.0292
  28. Agulhari, C.M., Oliveira, R.C., Peres, P.L.: Robust static output-feedback design for time-invariant discrete-time polytopic systems from parameter-dependent state-feedback gains. In: Proceedings of the IEEE American Control Conference, pp. 4677-4682 (2020)
  29. Kang, J., Chen, X., Bai, Y.: Research on and design of photovoltaic grid-connected inverter based on control under weak current network. Power Syst. Clean Energy. 37(9), 108-117 (2021)
  30. Faiz, M.T., Khan, M.M., Huawei, J., Mumtaz, M.A., Shahid, M.U., Houjun, T.: robust control with improved harmonics suppression for inverter-based distributed generation systems. IET Power Electron. 13(13), 2742-2755 (2020) https://doi.org/10.1049/iet-pel.2019.1408