DOI QR코드

DOI QR Code

Differential mode voltage reduction in dual inverters used to drive open-end winding interior permanent magnet synchronous motors

  • Hyung‑Woo Lee (Department of Electrical and Computer Engineering, Ajou University) ;
  • Deog‑Ho Lee (R&D Division, S&D Powernics) ;
  • Kyo‑Beum Lee (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2023.02.06
  • Accepted : 2023.07.24
  • Published : 2023.10.20

Abstract

In this paper, a level-shift-based voltage modulation method for dual inverters used to drive open-end winding interior permanent magnet synchronous motors is presented. Notably, the conventional level-shift-based voltage modulation method used for dual inverters presents a disadvantage, since the differential mode voltage (DMV) significantly increases compared with that in the basic control method of dual inverters. This defect can be attributed to the fact that the conventional level-shift-based voltage modulation method uses a voltage vector combination that generates the maximum DMV peak value. To address this problem, the proposed method reduces the DMV by explicitly switching the voltage vectors that generate a large DMV. In this paper, the DMV generation process in a dual-inverter system is analyzed. Moreover, the DMV tendencies of the conventional and proposed methods are divided into operating regions according to the modulation index, which are further analyzed. The effectiveness and performance of the proposed voltage modulation method for a dual inverter are verified based on simulation and experimental results.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20206910100160 and No. 20225500000110).

References

  1. Lee, K.-B. (2019) Advanced Power Electronics, 1st edn., pp. 141-210. Munundang, Seoul
  2. Seo, D.-W., Bak, Y., Lee, K.-B.: An improved rotating restart method for a sensorless permanent magnet synchronous motor drive system using repetitive zero voltage vectors. IEEE Trans. Ind. Electron. 67(5), 3496-3504 (2020)
  3. Ma, L., Wang, F., Shen, W., Wang, J.: Fault-tolerant control based on modifed exogenous kalman flter for PMSM. J. Electr. Eng. Technol. 18(2), 1313-1323 (2023) https://doi.org/10.1007/s42835-022-01223-y
  4. Li, H., Liu, Z., Shao, J.: A Model predictive current control based on adaline neural network for PMSM. J. Electr. Eng. Technol. 18(2), 953-960 (2023) https://doi.org/10.1007/s42835-022-01324-8
  5. Al-kaf, H., Lee, K.-B.: Robust hybrid current controller for permanent-magnet synchronous motors. J. Electr. Eng. Technol. 18(3), 1863-1872 (2023) https://doi.org/10.1007/s42835-023-01383-5
  6. Yang, C., Hua, T., Dai, Y., Huang, X., Zhang, D.: Second-order nonlinear disturbance observer based adaptive disturbance rejection control for pmsm in electric vehicles. J. Electr. Eng. Technol. 18(3), 1919-1930 (2023) https://doi.org/10.1007/s42835-022-01237-6
  7. Kim, H.-W., Kang, S.-H., Jung, S.-Y., Yeo, H.-K.: Design and analysis of permanent-magnet vernier machine for direct-driven wind power generator considering pole-slot combinations. J. Electr. Eng. Technol. 18(1), 319-327 (2023) https://doi.org/10.1007/s42835-022-01231-y
  8. Zhang, Y., Yan, Q., Huang, N., Wu, Z., Gong, H., Du, G.: Fuzzy approximation-based backstepping control of permanent magnet synchronous motor. J. Electr. Eng. Technol. 18(3), 2115-2126 (2023) https://doi.org/10.1007/s42835-022-01315-9
  9. Zhu, Y., Xaio, M., Cao, B., Lu, K., Wu, Z.: A position error compensation method for sensorless IPMSM based on the voltage output of the current-loop PI-regulator. J. Electr. Eng. Technol. 17(2), 1051-1059 (2022) https://doi.org/10.1007/s42835-021-00912-4
  10. Song, J., Song, W.-X., Liu, Z.-J., Ma, S.-C.: Active damping stability control method based on voltage compensation for ipmsm drives with small DC-link capacitor. J. Electr. Eng. Technol. 18(2), 1161-1172 (2023) https://doi.org/10.1007/s42835-022-01189-x
  11. Lee, H.-W., Cho, D.-H., Lee, K.-B.: Rotor position estimation over entire speed range of interior permanent magnet synchronous motors. J. Power Electron. 21(4), 639-702 (2021) https://doi.org/10.1007/s43236-021-00217-9
  12. Oh, Y.-G., Han, B., Lee, K.-B.: Direct self-control of interior permanent magnet synchronous motors with a constant switching frequency. J. Electr. Eng. Technol. 35(17), 1121-1130 (2022) https://doi.org/10.1007/s42835-021-00950-y
  13. He, L., Wu, X., Nie, Y., Shi, W.: loss prediction of vehicle permanent magnet synchronous motor based on deep learning. J. Electr. Eng. Technol. 18(2), 1053-1063 (2023) https://doi.org/10.1007/s42835-022-01153-9
  14. Zhang, W., Xiao, F., Liu, J., Mai, Z., Li, C.: Maximum torque per ampere control for IPMSM traction system based on current angle signal injection method. J. Electr. Eng. Technol. 15(4), 1681-1691 (2020) https://doi.org/10.1007/s42835-020-00434-5
  15. Kim, S.-Y., Jo, H.-R., Cho, S., Lee, K.-B.: Estimation of junction temperature in a two-level insulated-gate bipolar transistor inverter for motor drives. J. Electr. Eng. Technol. 17(2), 1111-1119 (2022) https://doi.org/10.1007/s42835-021-00934-y
  16. Moon, J.-H., Kang, D.-W.: Torque ripple and cogging torque reduction method of ipmsm using asymmetric shoe of stator and notch in stator. J. Electr. Eng. Technol. 17(6), 3465-3471 (2022)
  17. Yoon, H.-J., Bae, S.-J., Kim, N.-H., Kim, Y.-J., Jung, S.-Y.: Torque equation to predict torque harmonic characteristic of IPMSM according to winding arrangement, number of phases, and pole-slot combination. J. Electr. Eng. Technol. 18(1), 339-346 (2023) https://doi.org/10.1007/s42835-022-01251-8
  18. Zhu, Y., Xiao, M., Tao, B., Lu, K., Wu, Z.: Discrete-time position observer design for sensorless IPMSM drives. J. Electr. Eng. Technol. 17(4), 2309-2318 (2022) https://doi.org/10.1007/s42835-022-01065-8
  19. Zhong, L., Hu, S.: Fast modulation strategy for open-end winding PMSM with common DC bus. J. Power Electron. 21(7), 1009-1019 (2021) https://doi.org/10.1007/s43236-021-00246-4
  20. Song, Z., Ma, X., Yu, Y.: Design of zero-sequence current controller for open-end winding PMSMs considering current measurement errors. IEEE Trans. Power Electron. 35(6), 6127-6138 (2020) https://doi.org/10.1109/TPEL.2019.2952402
  21. Sadhu, N.L., Teegala, B.R., Marapu, V.K.: Constant and variable switching frequency random PWM strategies for open-end winding induction motor drive. J. Power Electron. 20(6), 1488-1495 (2020) https://doi.org/10.1007/s43236-020-00137-0
  22. Song, Z., Zhou, F., Yu, Y., Zhang, R., Hu, S.: Open-phase fault-tolerant predictive control strategy for open-end-winding permanent magnet synchronous machines without postfault controller reconfiguration. IEEE Trans. Ind. Electron. 68(5), 3770-3781 (2021) https://doi.org/10.1109/TIE.2020.2984975
  23. Lin, X.G., Huang, W.X., Wang, L.: SVPWM strategy based on the hysteresis controller of zero-sequence current for three-phase open-end winding PMSM. IEEE Trans. Power Electron. 34(4), 3474-3486 (2019) https://doi.org/10.1109/TPEL.2018.2856372
  24. Menon, R., Azeez, N.A., Kadam, A.H., Williamson, S.S., Bacioiu, C.: An instantaneous power balancing technique for an open-end IM drive using carrier-based modulation for vehicular application. IEEE Trans. Ind. Electron. 66(12), 9217-9225 (2019) https://doi.org/10.1109/TIE.2018.2886749
  25. Zhu, B., Tan, C., Farshadnia, M., Fletcher, J.E.: Postfault zero sequence current injection for open-circuit diode/switch failure in open-end winding PMSM machines. IEEE Trans. Ind. Electron. 66(7), 5124-5132 (2019) https://doi.org/10.1109/TIE.2018.2868007
  26. Aghazadeh, A., Jafari, M., Khodabakhshi-Javinani, N., Nafisi, H., Namvar, H.J.: Introduction and advantage of space opposite vectors modulation utilized in dual two-level inverters with isolated DC sources. IEEE Trans. Ind. Electron. 66(10), 7581-7592 (2019) https://doi.org/10.1109/TIE.2018.2880720
  27. Kiadehi, A.D., Drissi, K.E.K., Pasquier, C.: Voltage THD reduction for dual-inverter fed open-end load with isolated DC sources. IEEE Trans. Ind. Electron. 64(3), 2102-2111 (2017) https://doi.org/10.1109/TIE.2016.2620420
  28. Amerise, A., Mengoni, M., Zarri, L., Tani, A., Rubino, S., Bojoi, R.: Open-end windings induction motor drive with floating capacitor bridge at variable DC-link voltage. IEEE Trans. Ind. Appl. 55(3), 2741-2749 (2019) https://doi.org/10.1109/TIA.2019.2894109
  29. Sun, D., Zheng, Z., Lin, B., Zhou, W., Chen, M.: A hybrid PWM based field weakening strategy for a hybrid-inverter-driven open winding PMSM system. IEEE Trans. Energy Convers. 32(3), 857-865 (2017) https://doi.org/10.1109/TEC.2017.2676020
  30. Ewanchuk, J., Salmon, J., Chapelsky, C.: A method for supply voltage boosting in an open-ended induction machine using a dual inverter system with a floating capacitor bridge. IEEE Trans. Power Electron. 28(3), 1348-1357 (2013) https://doi.org/10.1109/TPEL.2012.2207741
  31. Nguyen, N.K., Meinguet, F., Semail, E., Kestelyn, X.: Fault-tolerant operation of an open-end winding five-phase PMSM drive with short circuit inverter fault. IEEE Trans. Ind. Electron. 63(1), 595-605 (2016) https://doi.org/10.1109/TIE.2014.2386299
  32. Karampuri, R., Jain, S., Somasekhar, V.T.: Common-mode current elimination PWM strategy along with current ripple reduction for open-winding five-phase induction motor drive. IEEE Trans. Power Electron. 34(7), 6659-6668 (2019) https://doi.org/10.1109/TPEL.2018.2873692
  33. An, Q., Liu, J., Peng, Z., Sun, L., Sun, L.: Dual-space vector control of open-end winding permanent magnet synchronous motor drive fed by dual inverter. IEEE Trans. Power Electron. 31(12), 8329-8342 (2016) https://doi.org/10.1109/TPEL.2016.2520999
  34. Zhan, H., Zhu, Z.Q., Odavic, M.: Analysis and suppression of zero sequence circulating current in open winding PMSM drives with common DC bus. IEEE Trans. Ind. Appl. 53(4), 3609-3620 (2017) https://doi.org/10.1109/TIA.2017.2679678
  35. Huang, J., Li, K.: Eliminating common-mode voltage spikes caused by dead-time effect in three-phase inverters through symmetrical rotation reverse carriers". IEEE Trans. Power Electron. 36(5), 6056-6067 (2021) https://doi.org/10.1109/TPEL.2020.3027712
  36. Nian, H., Hu, W.: Torque ripple suppression method with reduced switching frequency for open-winding PMSM drives with common DC bus. IEEE Trans. Ind. Electron. 66(1), 674-684 (2018)
  37. Zhou, Y., Nian, H.: Zero-sequence current suppression strategy of open winding PMSG system with common DC bus based on zero vector redistribution. IEEE Trans. Ind. Electron. 62(6), 3399-3408 (2015) https://doi.org/10.1109/TED.2015.2461657