DOI QR코드

DOI QR Code

Non-isolated buck based three port DC-DC converter for medium power standalone photovoltaic applications

  • Satabdi Bhattacharya (Department of Electrical Engineering, National Institute of Technology Rourkela) ;
  • Susovon Samanta (Department of Electrical Engineering, National Institute of Technology Rourkela)
  • Received : 2022.07.18
  • Accepted : 2023.04.12
  • Published : 2023.10.20

Abstract

The design and development of a non-isolated buck-based three-port dc-dc converter for medium-power standalone PV systems are presented in this paper. The topology is obtained from a parallel connection of conventional buck and boost converters. An attractive feature of this converter is the implementation of a buck topology at the PV side, which ensures cost-effective PV panel wiring, reduced converter development cost, and better efficiency of the PV system during low irradiation periods when compared to its boost counterpart. The proposed converter includes three operating modes based on load power requirements and PV power generation. An autonomous mode transition algorithm is proposed for seamless transitions between various operating modes. The design methodology, losses, and operation of the converter are discussed in this paper. A low-cost and efficient 2 kW laboratory prototype model of the proposed converter has been developed. Experimental validations are provided to showcase the effectiveness and viability of the proposed converter under various operating conditions.

Keywords

References

  1. Bhattacharyya, S., Samanta, S.: DC link voltage control based power management scheme for standalone PV systems. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1-5 (2018) 
  2. Wang, Z., Luo, Q., Wei, Y., Mou, D., Lu, X., Sun, P.: Topology analysis and review of three-port DC-DC converters. IEEE Trans. Power Electron. 35(11), 11783-11800 (2000)  https://doi.org/10.1109/TPEL.2020.2985287
  3. Bhattacharjee, A.K., Kutkut, N., Batarseh, I.: Review of multiport converters for solar and energy storage integration. IEEE Trans. Power Electron. 34(2), 1431-1445 (2018)  https://doi.org/10.1109/TPEL.2018.2830788
  4. Zhao, C., Round, S.D., Kolar, J.W.: An isolated three-port bidirectional DC-DC converter with decoupled power flow management. IEEE Trans. Power Electron. 23(5), 2443-2453 (2008)  https://doi.org/10.1109/TPEL.2008.2002056
  5. Krishnaswami, H., Mohan, N.: Three-port series-resonant DC-DC converter to interface renewable energy sources with bidirectional load and energy storage ports. IEEE Trans. Power Electron. 24(10), 2289-2297 (2009)  https://doi.org/10.1109/TPEL.2009.2022756
  6. Wu, H., Chen, R., Zhang, J., Xing, Y., Hu, H., Ge, H.: A family of three-port half-bridge converters for a standalone renewable power system. IEEE Trans. Power Electron. 26(9), 2697-2706 (2011)  https://doi.org/10.1109/TPEL.2011.2125991
  7. Wu, H., Sun, K., Zhu, L., Xing, Y.: An interleaved half-bridge three-port converter with enhanced power transfer capability using three-leg rectifier for renewable energy applications. IEEE Journal of Emerging and Selected Topics in Power Electronics 4(2), 606-616 (2015)  https://doi.org/10.1109/JESTPE.2015.2478140
  8. Zhu, H., Zhang, D., Athab, H.S., Wu, B., Gu, Y.: PV isolated three-port converter and energy-balancing control method for PV-battery power supply applications. IEEE Trans. Industr. Electron. 62(6), 3595-3606 (2014) 
  9. Wu, H., Sun, K., Ding, S., Xing, Y.: Topology derivation of non-isolated three-port DC-DC converters from DIC and DOC. IEEE Trans. Power Electron. 28(7), 3297-3307 (2012)  https://doi.org/10.1109/TPEL.2012.2221746
  10. Cheng, T., Lu, D.D.C., Qin, L.: Non-isolated single-inductor DC/DC converter with fully reconfigurable structure for renewable energy applications. IEEE Trans. Circuits Syst. II Express Briefs 65(3), 351-355 (2017) 
  11. Honarjoo, B., Madani, S.M., Niroomand, M., Adib, E.: Non-isolated high step-up three-port converter with single magnetic element for photovoltaic systems. IET Power Electronics 11(13), 2151-2160 (2018)  https://doi.org/10.1049/iet-pel.2017.0934
  12. Al-Soeidat, M.R., Aljarajreh, H., Khawaldeh, H.A., Lu, D.D.C., Zhu, J.: A reconfigurable three-port DC-DC converter for integrated PV-battery system. IEEE Journal of Emerging and Selected Topics in Power Electronics 8(4), 3423-3433 (2019)  https://doi.org/10.1109/JESTPE.2019.2941595
  13. Faraji, R., Farzanehfard, H., Esteki, M., Khajehoddin, S.A.: A lossless passive snubber circuit for three-port DC-DC converter. IEEE Journal of Emerging and Selected Topics in Power Electronics 9(2), 1905-1914 (2020)  https://doi.org/10.1109/JESTPE.2020.3017619
  14. Rostami, S., Abbasi, V., Talebi, N., Kerekes, T.: Three-port DC-DC converter based on quadratic boost converter for standalone PV/battery systems. IET Power Electronics 13(10), 2106-2118 (2020)  https://doi.org/10.1049/iet-pel.2019.1025
  15. Aljarajreh, H., Lu, D.D.C., Siwakoti, Y.P., Aguilera, R.P., Chi, K.T.: A Method of Seamless Transitions Between Different Operating Modes for Three-Port DC-DC Converters. IEEE Access 9, 59184-59195 (2021)  https://doi.org/10.1109/ACCESS.2021.3073948
  16. Luo, P., Guo, L., Xu, J., Li, X.: Analysis and Design of a New Non-Isolated Three-Port Converter With High Voltage Gain for Renewable Energy Applications. IEEE Access 9, 115909- 115921 (2021)  https://doi.org/10.1109/ACCESS.2021.3106058
  17. Tian, Q., Zhou, G., Leng, M., Xu, G., Fan, X., Yan, T.: Analysis, control, and modeling of the three-port converter without port voltage constraint for photovoltaic/battery system application. Int. J. Circuit Theory Appl. 49(9), 2791-2811 (2021)  https://doi.org/10.1002/cta.3043
  18. Khamisani, A.A.: Design methodology of of-grid PV solar-powered system (A case study of solar-powered bus shelter). Eastern Illinois University, Goolincoln Avenue Charleston, IL (2019) 
  19. Loom Solar: 2 kW Solar System price in India. (2021) 
  20. Luminous: Solar of-grid solutions. (2022) 
  21. TATA Power Solar: OFF-Grid Solar System. 
  22. Mekhilef, S., Saidur, R., Kamalisarvestani, M.: Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 16(5), 2920-2925 (2012)  https://doi.org/10.1016/j.rser.2012.02.012
  23. Venkatramanan, D., John, V.: Dynamic modelling and analysis of buck converter based solar PV charge controller for improved MPPT performance. IEEE Trans. Ind. Appl. 55(6), 6234-6246 (2019)  https://doi.org/10.1109/TIA.2019.2937856
  24. Coelho, R. F., Martins, D. C.: An optimized maximum power point tracking method based on PV surface temperature measurement. Sustainable Energy-Recent Studies, 89-114 (2012) 
  25. Bhattacharya, S., Samanta, S.: A Novel Non-Isolated Three Port DC-DC Converter for Photovoltaic Applications. IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), 1-6 (2020)