DOI QR코드

DOI QR Code

Characterization of Oleogels and Oleogel Emulsions Made with Sucrose Ester and Ceramide as Mixed Gelators

수크로스 에스터와 세라마이드를 혼합 겔레이터로 사용한 올레오겔과 올레오겔 에멀젼의 특성 분석

  • Dayeon Lee (Division of Chemistry and Cosmetics, Dongduk Women's University) ;
  • Byung Suk Jin (Division of Chemistry and Cosmetics, Dongduk Women's University)
  • 이다연 (동덕여자대학교 화학.화장품학부) ;
  • 진병석 (동덕여자대학교 화학.화장품학부)
  • Received : 2023.07.03
  • Accepted : 2023.07.24
  • Published : 2023.10.10

Abstract

Oleogel and oleogel emulsions of sunflower oil were prepared using sucrose ester and ceramide as mixed gelators. The crystal structure of the gelator in the oleogels and oleogel emulsion formulations was observed with a polarized optical microscope, and the dispersion form of water was confirmed with confocal laser scanning microscopy. Through the DSC thermogram analysis, it was confirmed that the crystal structure of ceramide disappeared when sucrose ester and ceramide were mixed, and the crystallinity of the mixed gelator increased further when water was added to the formulation. Changes in rheological properties such as viscosity and viscoelasticity according to the ratio of sucrose ester, ceramide, and water in the formulation were examined. As the content of ceramide and water increased, the viscosity, storage modulus, and loss modulus all increased, and the stability of the formulation also tended to increase.

수크로스 에스터와 세라마이드를 혼합하여 겔레이터로 사용한 해바라기 오일의 올레오겔과 올레오겔 에멀전을 제조하였다. 올레오겔과 올레오겔 에멀젼 제형 내에서 겔레이터의 결정 구조는 편광현미경으로 관찰하고 물의 분산형태는 공초점 현미경으로 확인하였다. DSC 열차트 분석을 통해, 수크로스 에스터와 세라마이드를 혼합하면 세라마이드의 결정구조는 사라지고 제형에 물이 첨가되면 혼합된 겔레이터의 결정성이 더욱 상승함을 확인하였다. 제형에서의 수크로스 에스터, 세라마이드, 물의 비율에 따른 점도와 점탄성 등의 유변학적 특성의 변화를 살펴보았다. 세라마이드와 물의 함량이 증가할수록 점도 및 저장탄성률, 손실 탄성률 등이 모두 증가하고, 또한 제형의 안정성도 높아지는 경향을 보였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 바이오산업기술개발사업(과제번호 20018375)의 지원에 의하여 수행된 결과의 일부이며 이에 감사의 뜻을 표합니다.

References

  1. Y. Lan, M. G. Corradini, A. G. Weiss, S. R. Raghavan, and M. A. Rogers, To gel or not to gel: Correlating molecular gelation with solvent parameters, Chem. Soc. Rev., 44, 6035-6058 (2015). https://doi.org/10.1039/C5CS00136F
  2. R. G. Weiss and P. Terech, Molecular Gels. Materials with self-assembled fibrillar networks, 1-12, Springer, Dordrecht, The Netherlands (2006).
  3. A. Singh, F. I. Auzanneau, and M. A. Rogers, Advances in edible oleogel technologies-A decade in review, Food Res. Int., 97, 307-317 (2017). https://doi.org/10.1016/j.foodres.2017.04.022
  4. E. Yilmaz and M. Ogutcu, Oleogels as spreadable fat and butter alternatives: Sensory description and consumer perception, RSC Adv., 5, 50259-50267 (2015).
  5. B. Mert and I. Demirkesen, Reducing saturated fat with oleogel/shortening blends in a baked product, Food Chem., 199, 809-816 (2016). https://doi.org/10.1016/j.foodchem.2015.12.087
  6. T. C. Pinto, A. J. Martins, L. Pastrana, M. C. Pereira, and M. A. Cerqueira, Oleogel-based systems for the delivery of bioactive compounds in foods, Gels, 7, 86 (2021).
  7. M. Davidovich-Pinhas, Oil structuring using polysaccharides, Curr. Opin. Food Sci., 27, 29-35 (2019). https://doi.org/10.1016/j.cofs.2019.04.006
  8. A. J. Martins, A. A. Vicente, L. M. Pastrana, and M. A. Cerqueira, Oleogels for development of health-promoting food products, Food Sci. Hum. Wellness, 9, 31-39 (2020). https://doi.org/10.1016/j.fshw.2019.12.001
  9. F. G. Gandolfo, A. Bot, and E. Floter, Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures, J. Am. Oil Chem. Soc., 81, 1-6 (2004). https://doi.org/10.1007/s11746-004-0851-5
  10. C. D. Doan, I. Tavernier, P. K. Okuro, and K. Dewettinck, Internal and external factors affecting the crystallization, gelation and applicability of wax-based oleogels in food industry, Innov. Food Sci. Emerg. Technol., 45, 42-52 (2018). https://doi.org/10.1016/j.ifset.2017.09.023
  11. M. A. Rogers, A. J. Wright, and A. G. Marangoni, Ceramide oleogels. In: A. G. Marangoni and N. Garti (eds.). Edible Oleogels, 221-234, AOCS Press, Urbana, USA (2011).
  12. M. Davidovich-Pinhas, S. Barbut, and A. G. Marangoni, Development, characterization, and utilization of food-grade polymer oleogels, Annu. Rev. Food Sci. Technol., 7, 65-91 (2016). https://doi.org/10.1146/annurev-food-041715-033225
  13. A. R. Patel and K. Dewettinck, Edible oil structuring: An overview and recent updates, Food Funct., 7, 20-29 (2016). https://doi.org/10.1039/C5FO01006C
  14. L. Mao, Y. Lu, M. Cui, S. Miao, and Y. Gao, Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients, Crit. Rev. Food Sci. Nutr., 60, 1651-1666 (2020). https://doi.org/10.1080/10408398.2019.1587737
  15. R. Kumar and O. P. Katare, Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: A review, AAPS PharmSciTech, 6, 298-310 (2005).
  16. M. O. Chloe, M. Davidovich-Pinhas, A. J. Wright, S. Barbut, and A. G. Marangoni, Ethylcellulose oleogels for lipophilic bioactive delivery-effect of oleogelation on in vitro bioaccessibility and stability of beta-carotene, Food Funct., 8, 1438-1451 (2017). https://doi.org/10.1039/C6FO01805J
  17. M. D. B. Sintang, S. Danthine, A. R. Patel, T. Rimaux, D. Van De Walle, and K. Dewettinck, Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring, J. Colloid Interface Sci., 504, 387-396 (2017). https://doi.org/10.1016/j.jcis.2017.05.114
  18. M. C. Puppo, S. Martini, R. W. Hartel, and M. L. Herrera, Effects of sucrose esters on isothermal crystallization and rheological behavior of blends of milk-fat fraction sunflower oil, J. Food Sci., 67, 3419-3426 (2002). https://doi.org/10.1111/j.1365-2621.2002.tb09600.x
  19. M. S. Park, J. W. Choi, S.-H. Lee, and B. S. Jin, Preparation of hydrated liquid crystalline vesicle using mutual self-association between ceramide and phospholipid, Appl. Chem. Eng., 31, 545-551 (2020).
  20. W. G. Cho, K. A. Kim, S. I. Jang, and B. O. Cho, Behaviour of nanoemulsions containing ceramide IIIB and stratum corneum lipids, J. Soc. Cosmet. Sci. Kor., 44, 31-37 (2018).
  21. S. Guo, M. Song, X. Gao, L. Dong, T. Hou, X. Lin, and Y. Lan, Assembly pattern of multicomponent supramolecular oleogel composed of ceramide and lecithin in sunflower oil: Self-assembly or self-sorting?, Food Funct., 11, 7651-7660 (2020). https://doi.org/10.1039/D0FO00635A
  22. J. A. Bouwstra, G. S. Gooris, F. E. Dubbelaar, and M. Ponec, Phase behavior of stratum corneum lipid mixtures based on human ceramides: The role of natural and synthetic ceramide 1, J. Invest. Dermatol., 118, 606-617 (2002). https://doi.org/10.1046/j.1523-1747.2002.01706.x
  23. A. Szuts and P. Szabo-Revesz, Sucrose esters as natural surfactants in drug delivery systems-A mini-review, Int. J. Pharm., 433, 1-9 (2012). https://doi.org/10.1016/j.ijpharm.2012.04.076
  24. W. Bae, T. Y. Yoon, and C. Jeong, Direct evaluation of self-quenching behavior of fluorophores at high concentrations using an evanescent field, PLoS One, 16, e0247326 (2021).