DOI QR코드

DOI QR Code

Copper-based Surface Coatings and Antimicrobial Properties Dependent on Oxidation States

구리 기반 표면코팅 및 산화수에 따른 항균·항바이러스 특성

  • Sangwon Ko (Transportation Environmental Research Department, Korea Railroad Research Institute)
  • 고상원 (한국철도기술연구원 교통환경연구실)
  • Received : 2023.08.25
  • Accepted : 2023.09.21
  • Published : 2023.10.10

Abstract

Copper is cost-effective and abundantly available as a biocidal coating agent for a wide range of material surfaces. Natural oxidation does not compromise the efficacy of copper, allowing it to maintain antimicrobial activity under prolonged exposure conditions. Furthermore, copper compounds exhibit a broad spectrum of antimicrobial activity against pathogenic yeast, both enveloped and non-enveloped types of viruses, as well as gram-negative and gram-positive bacteria. Contact killing of copper-coated surfaces causes the denaturation of proteins and damage to the cell membrane, leading to the release of essential components such as nucleotides and cytoplasm. Additionally, redox-active copper generates reactive oxygen species (ROS), which cause permanent cell damage through enzyme deactivation and DNA destruction. Owing to its robust stability, copper has been utilized in diverse forms, such as nanoparticles, ions, composites, and alloys, resulting in the creation of various coating methods. This mini-review describes representative coating processes involving copper ions and copper oxides on various material surfaces, highlighting the antibacterial and antiviral properties associated with different oxidation states of copper.

구리(Cu)는 저렴한 비용으로 용이하게 도입이 가능하여 다양한 소재 표면에 살균 코팅제로 쓰이고 있다. 자연적 산화 반응이 구리의 효능을 손상시키지 않아 장기간 노출 조건에서도 항균 성능을 유지할 수 있다. 더 나아가 구리 화합물은 그람 음성균 및 그람 양성균 뿐만 아니라, 병원성 효모, 외피 보유 및 외피 미보유 타입의 바이러스에 대해 모두 폭넓은 살균 효과를 보인다. 구리 코팅 표면의 접촉 살균은 구리의 침투로 단백질 변성을 일으키고 세포막 손상으로 뉴클레오티드 및 세포질 등의 내용물이 용출되게 한다. 또한 구리 산화환원 활성에 의한 활성 산소종 생성으로 효소작용을 억제하고 DNA를 파괴하여 세포를 영구적으로 손상시킨다. 구리는 안정한 금속 성질 때문에 나노입자, 이온, 복합물, 합금 등의 여러 형태로 쓰이고 있으며 코팅 방법이 다양하다. 본 총설에서는 구리 이온과 구리 산화물의 대표적인 표면 도입 방법을 살펴보고 구리 산화수에 따른 항균·항바이러스 특성을 다루고자 한다.

Keywords

Acknowledgement

본 연구는 한국철도기술연구원 기본사업(철도기술의 친환경화를 위한 핵심기술 개발, PK2303F2)의 연구비 지원으로 수행되었습니다.

References

  1. G. Pei, M. Taylor, and D. Rim, Human exposure to respiratory aerosols in a ventilated room: Effects of ventilation condition, emission mode, and social distancing, Sustain. Cities Soc., 73, 103090 (2021)
  2. S. Ko, W. Jeong, D. Park, and S.-B. Kwon, Numerical analysis of droplets exhaled by train cabin passengers, J. Odor Indoor Environ., 18, 131-139 (2019). https://doi.org/10.15250/joie.2019.18.2.131
  3. I. T. Yu, Y. Li, T. W. Wong, W. Tam, A. T. Chan, J. H. Lee, D. Y. Leung, and T. Ho, Evidence of airborne transmission of the severe acute respiratory syndrome virus, N. Engl. J. Med., 350, 1731-1739 (2004). https://doi.org/10.1056/NEJMoa032867
  4. N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, J. O. Lloyd-Smith, E. de Wit, and V. J. Munster, Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1, N. Engl. J. Med., 382, 1564-1567 (2020). https://doi.org/10.1056/NEJMc2004973
  5. C. A. Fux, J. W. Costerton, P. S. Stewart, and P. Stoodley, Survival strategies of infectious biofilms, Trends Microbiol., 13, 34-40 (2005). https://doi.org/10.1016/j.tim.2004.11.010
  6. J. Y. Kim, H.-J. Park, and J. Yoon, Antimicrobial activity and mechanism for various nanoparticles, Appl. Chem. Eng., 21, 366-371 (2010).
  7. M. Cloutier, D. Mantovani, and F. Rosei, Antibacterial coatings: Challenges, perspectives, and opportunities, Trends Biotechnol., 33, 637-652 (2015). https://doi.org/10.1016/j.tibtech.2015.09.002
  8. J. J. T. M. Swartjes, P. K. Sharma, T. G. van Kooten, H. C. van der Mei, M. Mahmoudi, H. J. Busscher, and E. T. J. Rochford, Current developments in antimicrobial surface coatings for biomedical applications, Curr. Med. Chem., 22, 2116-2129 (2015). https://doi.org/10.2174/0929867321666140916121355
  9. S. Ko, J.-Y. Lee, and D. Park, Recent progress of antibacterial coatings on solid substrates through antifouling polymers, Appl. Chem. Eng., 32, 371-378 (2021).
  10. R. Pemmada, X. Zhu, M. Dash, Y. Zhou, S. Ramakrishna, X. Peng, V. Thomas, S. Jain, and H. S. Nanda, Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics, Materials, 13, 4041 (2020).
  11. M. Birkett, L. Dover, C. C. Lukose, A. W. Zia, M. M. Tambuwala, and A. Serrano-Aroca, Recent advances in metalbased antimicrobial coatings for high-touch surfaces, Int. J. Mol. Sci., 23, 1162 (2022).
  12. W. Wua, W. Zhao, Y. Wu, C. Zhou, L. Li, Z. Liu, J. Dong, and K. Zhou, Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings, Appl. Surf. Sci., 465, 279-287 (2019). https://doi.org/10.1016/j.apsusc.2018.09.184
  13. G. Grass, C. Rensing, and M. Solioz, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77, 1541-1547 (2011). https://doi.org/10.1128/AEM.02766-10
  14. M. L. Ermini, and Valerio Voliani, Antimicrobial nano-agents: The copper age, ACS Nano, 15, 6008-6029 (2021). https://doi.org/10.1021/acsnano.0c10756
  15. C. Popescu, S. Alain, M. Courant, A. Vardelle, A. Denoirjean, and M. Cavarro, Thermal ray copper-based coatings against contamination of thermoplastic surfaces: A systematic review, Eng. Sci. Technol. Int. J., 35, 101194 (2022).
  16. N. Bharadishettar, U. Bhat K, and D. B. Panemangalore, Coating technologies for copper based antimicrobial active surfaces: A perspective review, Metals, 11, 711 (2021).
  17. G. Gregor, C. Rensing, and M. Solioz, Metallic copper as antimicorobial surfaces, Am. Soc. Microbiol., 77, 1541-1547 (2011).
  18. S. Meghana, P. Kabra, S. Chakraborty, and N. Padmavathy, Understanding the pathway of antibacterial activity of copper oxide nanoparticles, RSC Adv., 5, 12293-12299 (2015). https://doi.org/10.1039/C4RA12163E
  19. C. Molteni, H. K. Abicht, and M. Solioz, Killing of bacteria by copper surfaces involves dissolved copper, Appl. Environ. Microbiol., 76, 4099-4101 (2010). https://doi.org/10.1128/AEM.00424-10
  20. M. Vincent, R. E. Duval, P. Hartemann, and M. Engels-Deutsch, Contact killing and antimicrobial properties of copper, J. Appl. Microbiol., 124, 1032-1046 (2017).
  21. V. Govind, S. Bharadwaj, M. R. Sai Ganesh, J. Vishnu, K. V. Shankar, B. Shankar, and R. Rajesh, Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review, Biometals, 34, 1217-1235 (2021). https://doi.org/10.1007/s10534-021-00339-4
  22. S. Jung, J.-Y. Yang, E.-Y. Byeon, D.-G. Kim, D.-G. Lee, S. Ryoo, S. Lee, C.-W. Shin, H. W. Jang, H. J. Kim, and S. Lee, Coppercoated polypropylene filter face mask with SARS-CoV-2 antiviral ability, Polymers, 13, 1367 (2021).
  23. G. Borkow, S. S. Zhou, T. Page, and J. Gabbay, A novel anti-influenza copper oxide containing respiratory face mask, PLoS ONE, 5, e11295 (2010).
  24. G. Borkow, R. W. Sidwell, D. F. Smee, D. L. Barnard, J. D. Morrey, H. H. Lara-Villegas, Y. Shemer-Avni, and J. Gabbay, Neutralizing viruses in suspensions by copper oxide-based filters, Antimicrob. Agents Chemother., 51, 2605-2607 (2007). https://doi.org/10.1128/AAC.00125-07
  25. K. Delgado, R. Quijada, R. Palma, and H. Palza, Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent, Lett. Appl. Microbiol., 53, 50-54 (2011). https://doi.org/10.1111/j.1472-765X.2011.03069.x
  26. J. Balcucho, D. M. Narvaez, and J. L. Castro-Mayorga, Antimicrobial and biocompatible polycaprolactone and copper oxide nanoparticle wound dressings against methicillin-resistant Staphylococcus aureus, Nanomaterials, 10, 1692 (2020).
  27. H. Moon, Y.-C. Lee, and J. Hur, One-Pot decoration of cupric oxide on activated carbon fibers mediated by polydopamine for bacterial growth inhibition, Materials, 13, 1158 (2020).
  28. K. Imai, H. Ogawa, V. N. Bui, H. Inoue, J. Fukuda, M. Ohba, Y. Yamamoto, and K. Nakamura, Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials, Antivir. Res., 93, 225-233 (2012). https://doi.org/10.1016/j.antiviral.2011.11.017
  29. D. Markovic, J. Asanin, T. Nunney, Z. Radovanovic, M. Radoicic, M. Mitric, D. Misic, and M. Radetic, Broad spectrum of antimicrobial activity of cotton fabric modified with oxalic acid and CuO/Cu2O nanoparticles, Fibers Polym., 20, 2317-2325 (2019). https://doi.org/10.1007/s12221-019-9131-5
  30. L. Valencia, S. Kumar, E. M. Nomena, G. Salazar-Alvarez, and A. P. Mathew, In-situ growth of metal oxide nanoparticles on cellulose nanofibrils for dye removal and antimicrobial applications, ACS Appl. Nano Mater., 3, 7172-7181 (2020). https://doi.org/10.1021/acsanm.0c01511
  31. N. C. Cady, J. L. Behnke., and A. D. Strickland, Copper-based nanostructured coatings on natural cellulose: Nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro, Adv. Funct. Mater., 21, 2506-2514 (2011). https://doi.org/10.1002/adfm.201100123
  32. D. Markovic, J. Vasiljevic, J. Asanin, T. Ilic-Tomic, B. Tomsic, B. Jokic, M. Mitric, B. Simoncic, D. Misic, and M. Radetic, The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions, J. Appl. Polym. Sci., 137, e49194 (2020).
  33. K. Shigetoh, R. Hirao, and N. Ishida, Durability and surface oxidation states of antiviral nano-columnar copper thin films, ACS Appl. Mater. Interfaces, 15, 20398-20409 (2023). https://doi.org/10.1021/acsami.3c01400
  34. R. A. Goncalves, J. W. K. Ku, H. Zhang, T. Salim, G. Oo, A. A. Zinn, C. Boothroyd, R. M. Y. Tang, C. L. Gan, Y.-H. Gan, and Y. M. Lam, Copper-nanoparticle-coated fabrics for rapid and sustained antibacterial activity applications, ACS Appl. Nano Mater., 5, 12876-12886 (2022). https://doi.org/10.1021/acsanm.2c02736
  35. M. Hans, A. Erbe, S. Mathews, Y. Chen, M. Solioz, and F. Mucklich, Role of copper oxides in contact killing of bacteria, Langmuir, 29, 16160-16166 (2013). https://doi.org/10.1021/la404091z
  36. H. K. Abicht, Y. Gonskikh, S. D. Gerber, and M. Solioz, Non-enzymatic copper reduction by menaquinone enhances copper toxicity in Lactococcus Lactis IL1403, Microbiology, 159, 1190-1197 (2013). https://doi.org/10.1099/mic.0.066928-0
  37. M. Minoshima. Y. Lu, T. Kimura, R. Nakano, H. Ishiguro, Y. Kubota, K. Hashimoto, and K. Sunada, Comparison of the antiviral effect of solid-state copper and silver compounds, J. Hazard. Mater., 312, 1-7 (2016). https://doi.org/10.1016/j.jhazmat.2016.03.023
  38. M. Horie, H. Ogawa, Y. Yoshida, K. Yamada, A. Hara, K. Ozawa, S. Matsuda, C. Mizota, M. Tani, Y. Yamamoto, M. Yamada, K. Nakamura, and K. Imai, Inactivation and morphological changes of avian influenza virus by copper ions, Arch. Virol., 153, 1467-1472 (2008). https://doi.org/10.1007/s00705-008-0154-2
  39. I. Perelshtein, Y. Ruderman, N. Perkas, J. Beddow, G. Singh, M. Vinatoru, E. Joyce, T. J. Mason, M. Blanes, K. Molla, and A. Gedanken, The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its antibacterial properties, Cellulose, 20, 1215-1221 (2013). https://doi.org/10.1007/s10570-013-9929-z
  40. I. Perelshtein, I. Levi, N. Perkas, A. Pollak, and A. Gedanken, CuO-Coated antibacterial and antiviral car air-conditioning filters, ACS Appl. Mater. Interfaces, 14, 24850-24855 (2022). https://doi.org/10.1021/acsami.2c06433
  41. I. Perelshtein, A. Lipovsky, N. Perkas, A. Gedanken, E. Moschini, and P. Mantecca, The influence of the crystalline nature of nanometal oxides on their antibacterial and toxicity properties, Nano Res., 8, 695-707 (2015). https://doi.org/10.1007/s12274-014-0553-5
  42. S. Ko, J.-Y. Lee, and D. Park, Antibacterial and antiviral activities of multi-coating polyester textiles, Appl. Chem. Eng., 33, 444-450 (2022).
  43. N. Hutasoit, B. Kennedy, S. Hamilton, A. Luttick, R. A. R. Rashid, and S. Palanisamy, Sars-CoV-2 (COVID-19) inactivation capability of copper-coated touch surface fabricated by cold-spray technology, Manuf. Lett., 25, 93-97 (2020). https://doi.org/10.1016/j.mfglet.2020.08.007
  44. S. Behzadinasab, A. Chin, M. Hosseini, L. Poon, and W. A. Ducker, A surface coating that rapidly inactivates SARS-CoV-2, ACS Appl. Mater. Interfaces, 12, 34723-34727 (2020). https://doi.org/10.1021/acsami.0c11425