Acknowledgement
This research work was funded by the Institutional Fund Project under grant no. (IFPIP: 769-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.
References
- Abdelrahman, A.A. and El-Shafei, A.G. (2021), "Modeling and analysis of the transient response of viscoelastic solids", Wave. Random Complex Media, 31(6), 1990-2020. https://doi.org/10.1080/17455030.2020.1714790.
- Abdelrahman, A.A., El-Shafei, A.G. and Mahmoud, F.F. (2019), "Analysis of steady-state frictional rolling contact problems in Schapery-nonlinear viscoelasticity", Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 233(6), 911-926. https://doi.org/10.1177/1350650118806675.
- Abir, M.R., Tay, T.E. and Lee, H.P. (2019), "On the improved ballistic performance of bio-inspired composites", Compos. Part A: Appl. Sci. Manuf., 123, 59-70. https://doi.org/10.1016/j.compositesa.2019.04.021.
- Almitani, K.H., Mohamed, N., Alazwari, M.A., Mohamed, S.A. and Eltaher, M.A. (2022), "Exact solution of nonlinear behaviors of imperfect bioinspired helicoidal composite beams resting on elastic foundations", Math., 10(6), 887. https://doi.org/10.3390/math10060887.
- Amorim, L., Santos, A., Nunes, J.P. and Viana, J.C. (2021), "Bioinspired approaches for toughening of fibre reinforced polymer composites", Mater. Des., 199, 109336. https://doi.org/10.1016/j.matdes.2020.109336.
- Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Behavior of viscoelastic composite plates under transient load", J. Mech. Sci. Technol., 25, 1129-1140. https://doi.org/10.1007/s12206-011-0302-6.
- Bahmani, A., Li, G., Willett, T.L. and Montesano, J. (2019), "Three-dimensional micromechanical assessment of bio-inspired composites with non-uniformly dispersed inclusions", Compos. Struct., 212, 484-499. https://doi.org/10.1016/j.compstruct.2019.01.056.
- Bar-On, B., Bayerlein, B., Blumtritt, H. and Zlotnikov, I. (2015), "Dynamic response of a single interface in a biocomposite structure", Phys. Rev. Lett., 115(23), 238001. https://doi.org/10.1103/physrevlett.115.238001.
- Bhaskar, D.P. and Thakur, A.G. (2019), "FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory", Adv. Aircraft Spacecraft Sci., 6(5), 409-426. https://doi.org/10.12989/aas.2019.6.5.409.
- Carrera, E. (2003), "Historical review of zig-zag theories for multilayered plates and shells", Appl. Mech. Rev., 56(3), 287-308. https://doi.org/10.1115/1.1557614.
- Cheng, L., Thomas, A., Glancey, J.L. and Karlsson, A.M. (2011), "Mechanical behavior of bio-inspired laminated composites", Compos. Part A: Appl. Sci. Manuf., 42(2), 211-220. https://doi.org/10.1016/j.compositesa.2010.11.009.
- Errico, F., Franco, F., Ichchou, M., De Rosa, S. and Petrone, G. (2019), "An investigation on the vibrations of laminated shells under aeroacoustic loads using a WFE approach", Adv. Aircraft Spacecraft Sci., 6, 463-479. https://doi.org/10.12989/aas.2019.6.6.463.
- Fantuzzi, N. and Tornabene, F. (2014a), "Strong formulation finite element method for arbitrarily shaped laminated plates-Part I. Theoretical analysis", Adv. Aircraft Spacecraft Sci., 1(2), 125. https://doi.org/10.12989/aas.2014.1.2.125.
- Fantuzzi, N. and Tornabene, F. (2014b), "Strong formulation finite element method for arbitrarily shaped laminated plates-Part II. Numerical analysis", Adv. Aircraft Spacecraft Sci., 1(2), 145. https://doi.org/10.12989/aas.2014.1.2.145.
- Filippi, M. and Carrera, E. (2016), "Capabilities of 1D CUF-based models to analyse metallic/composite rotors", Adv. Aircraft Spacecraft Sci., 3(1), 1. https://doi.org/10.12989/aas.2016.3.1.001.
- Garg, A., Belarbi, M.O., Chalak, H.D., Li, L., Sharma, A., Avcar, M., ... & Gulia, R. (2023), "Buckling and free vibration analysis of bio-inspired laminated sandwich plates with helicoidal/Bouligand face sheets containing softcore", Ocean Eng., 270, 113684. https://doi.org/10.1016/j.oceaneng.2023.113684.
- Haldar, S. and Bruck, H. A. (2014), "Mechanics of composite sandwich structures with bioinspired core", Compos. Sci. Technol., 95, 67-74. https://doi.org/10.1016/j.compscitech.2014.02.011.
- Han, Q., Chen, S., Wang, J., Han, J., Shi, S., Li, R., ... & Ren, L. (2023), "Biomimetic laminated basalt fiber-reinforced composite with sinusoidally architected helicoidal structure integrating superior mechanical properties and microwave-transmissibility", Compos. Sci. Technol., 231, 109836. https://doi.org/10.1016/j.compscitech.2022.109836.
- Han, Q., Li, H., Chen, X., Shi, S., Shao, R., Li, B. and Han, Z. (2022), "Impact resistant basalt fiber-reinforced aluminum laminate with Janus helical structures inspired by lobster and mantis shrimp", Compos. Struct., 291, 115551. https://doi.org/10.1016/j.compstruct.2022.115551.
- Han, Q., Qin, H., Liu, Z., Han, Z., Zhang, J., Niu, S., ... & Shi, S. (2020), "Experimental investigation on impact and bending properties of a novel dactyl-inspired sandwich honeycomb with carbon fiber", Constr. Build. Mater., 253, 119161. https://doi.org/10.1016/j.conbuildmat.2020.119161.
- Heimbs, S., Heller, S., Middendorf, P., Hahnel, F. and Weisse, J. (2009), "Low velocity impact on CFRP plates with compressive preload: Test and modelling", Int. J. Impact Eng., 36(10-11), 1182-1193. https://doi.org/10.1016/j.ijimpeng.2009.04.006.
- Jayatilake, I. N., Karunasena, W. and Lokuge, W. (2016), "Finite element based dynamic analysis of multilayer fibre composite sandwich plates with interlayer delaminations", Adv. Aircraft Spacecraft Sci., 3(1), 15. https://doi.org/10.12989/aas.2016.3.1.015.
- Kaci, D.A., Madani, K., Mokhtari, M., Feaugas, X. and Touzain, S. (2017), "Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate", Adv. Aircraft Spacecraft Sci., 4(6), 679. https://doi.org/10.12989/aas.2017.4.6.679.
- Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 223(2), 53-62. https://doi.org/10.1243/14644207jmda189.
- Karamanli, A., Eltaher, M.A., Thai, S. and Vo, T.P. (2023), "Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model", Eng. Struct., 278, 115566. https://doi.org/10.1016/j.engstruct.2022.115566.
- Lee, S., Lim, D.D., Pegg, E. and Gu, G.X. (2022), "The origin of high-velocity impact response and damage mechanisms for bioinspired composites", Cell Report. Phys. Sci., 3(12), 1. https://doi.org/10.1016/j.xcrp.2022.101152.
- Liew, K.M., Zhao, X. and Ferreira, A.J. (2011), "A review of meshless methods for laminated and functionally graded plates and shells", Compos. Struct., 93(8), 2031-2041. https://doi.org/10.1016/j.compstruct.2011.02.018.
- Magrini, T., Senol, A., Style, R., Bouville, F. and Studart, A.R. (2022), "Fracture of hierarchical multi-layered bioinspired composites", J. Mech. Phys. Solid., 159, 104750. https://doi.org/10.1016/j.jmps.2021.104750.
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020.
- Melaibari, A., Wagih, A., Basha, M., Kabeel, A.M., Lubineau, G. and Eltaher, M.A. (2021), "Bio-inspired composite laminate design with improved out-of-plane strength and ductility", Compos. Part A: Appl. Sci. Manuf., 144, 106362. https://doi.org/10.1016/j.compositesa.2021.106362.
- Mohamed, S.A., Mohamed, N. and Eltaher, M.A. (2022a), "Bending, buckling and linear vibration of bioinspired composite plates", Ocean Eng., 259, 111851. https://doi.org/10.1016/j.oceaneng.2022.111851.
- Mohamed, S.A., Mohamed, N. and Eltaher, M.A. (2022b), "Snap-through instability of helicoidal composite imperfect beams surrounded by nonlinear elastic foundation", Ocean Eng., 263, 112171. https://doi.org/10.1016/j.oceaneng.2022.112171.
- Moosazadeh, H. and Mohammadi, M.M. (2021), "Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load", Adv. Aircraft Spacecraft Sci., 8(4), 345-372. https://doi.org/10.12989/aas.2021.8.4.345.
- Pagano, N.J. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102.
- Rachid, Z., Kaddour, R. and Achache, H. (2018), "Dynamic calculation of a tapered shaft rotor made of composite material", Adv. Aircraft Spacecraft Sci., 5(1), 51. https://doi.org/10.12989/aas.2018.5.1.051.
- Reddy, J.N. (1990), "A review of refined theories of laminated composite plates", Shock Vib. Digest, 22(7), 3-17. https://doi.org/10.1177/058310249002200703.
- Reddy, J.N. (2003). Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
- Sojobi, A.O. and Liew, K.M. (2022), "Multi-objective optimization of high performance bio-inspired prefabricated composites for sustainable and resilient construction", Compos. Struct., 279, 114732. https://doi.org/10.1016/j.compstruct.2021.114732.
- Wang, H., Wang, C., Hazell, P.J., Wright, A., Zhang, Z., Lan, X., ... & Zhou, M. (2021), "Insights into the high-velocity impact behaviour of bio-inspired composite laminates with helicoidal lay-ups", Polym. Test., 103, 107348. https://doi.org/10.1016/j.polymertesting.2021.107348.
- Yang, F. and Xie, W. (2022), "Thermal buckling behavior of Bouligand inspired laminated composite plates", J. Compos. Mater., 56(26), 3939-3947. https://doi.org/10.1177/00219983221125905.
- Yang, F., Xie, W. and Meng, S. (2020), "Global sensitivity analysis of low-velocity impact response of bioinspired helicoidal laminates", Int. J. Mech. Sci., 187, 106110. https://doi.org/10.1016/j.ijmecsci.2020.106110.
- Zhang, B., Yang, J., Li, Y., Zhang, J., Niu, S., Han, Z. and Ren, L. (2023), "Bioinspired basalt fiber composites with higher impact resistance through coupling sinusoidal and helical structures inspired by mantis shrimp", Int. J. Mech. Sci., 244, 108073. https://doi.org/10.1016/j.ijmecsci.2022.108073.
- Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014.