DOI QR코드

DOI QR Code

Static and modal analysis of bio-inspired laminated composite shells using numerical simulation

  • Faisal Baakeel (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Mohamed A. Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Muhammad Adnan Basha (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Ammar Melibari (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Alaa A. Abdelrhman (Mechanical Design and Production Department, Faculty of Engineering, Zagazig University)
  • Received : 2023.04.03
  • Accepted : 2023.09.25
  • Published : 2023.07.25

Abstract

In the first part of this study, a numerical simulation model was developed using the mechanical APDL software to validate the results of the 3D-elastisity theory on the laminated sandwich plate developed by Panago. The numerical simulation model showed a good agreement to the results of Pagano's theory in terms of deflection, normal stresses, and shear stresses. In the second part of this study, the developed numerical simulation model was used to define different plates dimensions and fibers layup orientations to examine the load response in terms of deflection and stresses. Further analysis was implemented on the natural frequencies of laminated xxx plates of the plates. The layup configurations include Unidirectional (UD), Cross-Ply (CP), Quasi-Isotropic (QI), the linear bio-inspired known as Linear-Helicoidal (LH), and the nonlinear bio-inspired known as Fibonacci-Helicoidal (FH). The following numerical simulation model can be used for the design and study of novel, sophisticated bio-inspired composite structures in a variety of configurations subjected to sinusoidal or constant loads.

Keywords

Acknowledgement

This research work was funded by the Institutional Fund Project under grant no. (IFPIP: 769-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

References

  1. Abdelrahman, A.A. and El-Shafei, A.G. (2021), "Modeling and analysis of the transient response of viscoelastic solids", Wave. Random Complex Media, 31(6), 1990-2020. https://doi.org/10.1080/17455030.2020.1714790.
  2. Abdelrahman, A.A., El-Shafei, A.G. and Mahmoud, F.F. (2019), "Analysis of steady-state frictional rolling contact problems in Schapery-nonlinear viscoelasticity", Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 233(6), 911-926. https://doi.org/10.1177/1350650118806675.
  3. Abir, M.R., Tay, T.E. and Lee, H.P. (2019), "On the improved ballistic performance of bio-inspired composites", Compos. Part A: Appl. Sci. Manuf., 123, 59-70. https://doi.org/10.1016/j.compositesa.2019.04.021.
  4. Almitani, K.H., Mohamed, N., Alazwari, M.A., Mohamed, S.A. and Eltaher, M.A. (2022), "Exact solution of nonlinear behaviors of imperfect bioinspired helicoidal composite beams resting on elastic foundations", Math., 10(6), 887. https://doi.org/10.3390/math10060887.
  5. Amorim, L., Santos, A., Nunes, J.P. and Viana, J.C. (2021), "Bioinspired approaches for toughening of fibre reinforced polymer composites", Mater. Des., 199, 109336. https://doi.org/10.1016/j.matdes.2020.109336.
  6. Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Behavior of viscoelastic composite plates under transient load", J. Mech. Sci. Technol., 25, 1129-1140. https://doi.org/10.1007/s12206-011-0302-6.
  7. Bahmani, A., Li, G., Willett, T.L. and Montesano, J. (2019), "Three-dimensional micromechanical assessment of bio-inspired composites with non-uniformly dispersed inclusions", Compos. Struct., 212, 484-499. https://doi.org/10.1016/j.compstruct.2019.01.056.
  8. Bar-On, B., Bayerlein, B., Blumtritt, H. and Zlotnikov, I. (2015), "Dynamic response of a single interface in a biocomposite structure", Phys. Rev. Lett., 115(23), 238001. https://doi.org/10.1103/physrevlett.115.238001.
  9. Bhaskar, D.P. and Thakur, A.G. (2019), "FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory", Adv. Aircraft Spacecraft Sci., 6(5), 409-426. https://doi.org/10.12989/aas.2019.6.5.409.
  10. Carrera, E. (2003), "Historical review of zig-zag theories for multilayered plates and shells", Appl. Mech. Rev., 56(3), 287-308. https://doi.org/10.1115/1.1557614.
  11. Cheng, L., Thomas, A., Glancey, J.L. and Karlsson, A.M. (2011), "Mechanical behavior of bio-inspired laminated composites", Compos. Part A: Appl. Sci. Manuf., 42(2), 211-220. https://doi.org/10.1016/j.compositesa.2010.11.009.
  12. Errico, F., Franco, F., Ichchou, M., De Rosa, S. and Petrone, G. (2019), "An investigation on the vibrations of laminated shells under aeroacoustic loads using a WFE approach", Adv. Aircraft Spacecraft Sci., 6, 463-479. https://doi.org/10.12989/aas.2019.6.6.463.
  13. Fantuzzi, N. and Tornabene, F. (2014a), "Strong formulation finite element method for arbitrarily shaped laminated plates-Part I. Theoretical analysis", Adv. Aircraft Spacecraft Sci., 1(2), 125. https://doi.org/10.12989/aas.2014.1.2.125.
  14. Fantuzzi, N. and Tornabene, F. (2014b), "Strong formulation finite element method for arbitrarily shaped laminated plates-Part II. Numerical analysis", Adv. Aircraft Spacecraft Sci., 1(2), 145. https://doi.org/10.12989/aas.2014.1.2.145.
  15. Filippi, M. and Carrera, E. (2016), "Capabilities of 1D CUF-based models to analyse metallic/composite rotors", Adv. Aircraft Spacecraft Sci., 3(1), 1. https://doi.org/10.12989/aas.2016.3.1.001.
  16. Garg, A., Belarbi, M.O., Chalak, H.D., Li, L., Sharma, A., Avcar, M., ... & Gulia, R. (2023), "Buckling and free vibration analysis of bio-inspired laminated sandwich plates with helicoidal/Bouligand face sheets containing softcore", Ocean Eng., 270, 113684. https://doi.org/10.1016/j.oceaneng.2023.113684.
  17. Haldar, S. and Bruck, H. A. (2014), "Mechanics of composite sandwich structures with bioinspired core", Compos. Sci. Technol., 95, 67-74. https://doi.org/10.1016/j.compscitech.2014.02.011.
  18. Han, Q., Chen, S., Wang, J., Han, J., Shi, S., Li, R., ... & Ren, L. (2023), "Biomimetic laminated basalt fiber-reinforced composite with sinusoidally architected helicoidal structure integrating superior mechanical properties and microwave-transmissibility", Compos. Sci. Technol., 231, 109836. https://doi.org/10.1016/j.compscitech.2022.109836.
  19. Han, Q., Li, H., Chen, X., Shi, S., Shao, R., Li, B. and Han, Z. (2022), "Impact resistant basalt fiber-reinforced aluminum laminate with Janus helical structures inspired by lobster and mantis shrimp", Compos. Struct., 291, 115551. https://doi.org/10.1016/j.compstruct.2022.115551.
  20. Han, Q., Qin, H., Liu, Z., Han, Z., Zhang, J., Niu, S., ... & Shi, S. (2020), "Experimental investigation on impact and bending properties of a novel dactyl-inspired sandwich honeycomb with carbon fiber", Constr. Build. Mater., 253, 119161. https://doi.org/10.1016/j.conbuildmat.2020.119161.
  21. Heimbs, S., Heller, S., Middendorf, P., Hahnel, F. and Weisse, J. (2009), "Low velocity impact on CFRP plates with compressive preload: Test and modelling", Int. J. Impact Eng., 36(10-11), 1182-1193. https://doi.org/10.1016/j.ijimpeng.2009.04.006.
  22. Jayatilake, I. N., Karunasena, W. and Lokuge, W. (2016), "Finite element based dynamic analysis of multilayer fibre composite sandwich plates with interlayer delaminations", Adv. Aircraft Spacecraft Sci., 3(1), 15. https://doi.org/10.12989/aas.2016.3.1.015.
  23. Kaci, D.A., Madani, K., Mokhtari, M., Feaugas, X. and Touzain, S. (2017), "Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate", Adv. Aircraft Spacecraft Sci., 4(6), 679. https://doi.org/10.12989/aas.2017.4.6.679.
  24. Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 223(2), 53-62. https://doi.org/10.1243/14644207jmda189.
  25. Karamanli, A., Eltaher, M.A., Thai, S. and Vo, T.P. (2023), "Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model", Eng. Struct., 278, 115566. https://doi.org/10.1016/j.engstruct.2022.115566.
  26. Lee, S., Lim, D.D., Pegg, E. and Gu, G.X. (2022), "The origin of high-velocity impact response and damage mechanisms for bioinspired composites", Cell Report. Phys. Sci., 3(12), 1. https://doi.org/10.1016/j.xcrp.2022.101152.
  27. Liew, K.M., Zhao, X. and Ferreira, A.J. (2011), "A review of meshless methods for laminated and functionally graded plates and shells", Compos. Struct., 93(8), 2031-2041. https://doi.org/10.1016/j.compstruct.2011.02.018.
  28. Magrini, T., Senol, A., Style, R., Bouville, F. and Studart, A.R. (2022), "Fracture of hierarchical multi-layered bioinspired composites", J. Mech. Phys. Solid., 159, 104750. https://doi.org/10.1016/j.jmps.2021.104750.
  29. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020.
  30. Melaibari, A., Wagih, A., Basha, M., Kabeel, A.M., Lubineau, G. and Eltaher, M.A. (2021), "Bio-inspired composite laminate design with improved out-of-plane strength and ductility", Compos. Part A: Appl. Sci. Manuf., 144, 106362. https://doi.org/10.1016/j.compositesa.2021.106362.
  31. Mohamed, S.A., Mohamed, N. and Eltaher, M.A. (2022a), "Bending, buckling and linear vibration of bioinspired composite plates", Ocean Eng., 259, 111851. https://doi.org/10.1016/j.oceaneng.2022.111851.
  32. Mohamed, S.A., Mohamed, N. and Eltaher, M.A. (2022b), "Snap-through instability of helicoidal composite imperfect beams surrounded by nonlinear elastic foundation", Ocean Eng., 263, 112171. https://doi.org/10.1016/j.oceaneng.2022.112171.
  33. Moosazadeh, H. and Mohammadi, M.M. (2021), "Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load", Adv. Aircraft Spacecraft Sci., 8(4), 345-372. https://doi.org/10.12989/aas.2021.8.4.345.
  34. Pagano, N.J. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102.
  35. Rachid, Z., Kaddour, R. and Achache, H. (2018), "Dynamic calculation of a tapered shaft rotor made of composite material", Adv. Aircraft Spacecraft Sci., 5(1), 51. https://doi.org/10.12989/aas.2018.5.1.051.
  36. Reddy, J.N. (1990), "A review of refined theories of laminated composite plates", Shock Vib. Digest, 22(7), 3-17. https://doi.org/10.1177/058310249002200703.
  37. Reddy, J.N. (2003). Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
  38. Sojobi, A.O. and Liew, K.M. (2022), "Multi-objective optimization of high performance bio-inspired prefabricated composites for sustainable and resilient construction", Compos. Struct., 279, 114732. https://doi.org/10.1016/j.compstruct.2021.114732.
  39. Wang, H., Wang, C., Hazell, P.J., Wright, A., Zhang, Z., Lan, X., ... & Zhou, M. (2021), "Insights into the high-velocity impact behaviour of bio-inspired composite laminates with helicoidal lay-ups", Polym. Test., 103, 107348. https://doi.org/10.1016/j.polymertesting.2021.107348.
  40. Yang, F. and Xie, W. (2022), "Thermal buckling behavior of Bouligand inspired laminated composite plates", J. Compos. Mater., 56(26), 3939-3947. https://doi.org/10.1177/00219983221125905.
  41. Yang, F., Xie, W. and Meng, S. (2020), "Global sensitivity analysis of low-velocity impact response of bioinspired helicoidal laminates", Int. J. Mech. Sci., 187, 106110. https://doi.org/10.1016/j.ijmecsci.2020.106110.
  42. Zhang, B., Yang, J., Li, Y., Zhang, J., Niu, S., Han, Z. and Ren, L. (2023), "Bioinspired basalt fiber composites with higher impact resistance through coupling sinusoidal and helical structures inspired by mantis shrimp", Int. J. Mech. Sci., 244, 108073. https://doi.org/10.1016/j.ijmecsci.2022.108073.
  43. Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014.