DOI QR코드

DOI QR Code

Optimization of scarf patch stacking sequences using the design of experiments method

  • Salma Aminallah (LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Sidi Mohamed Fekih (LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Abdelrahmen Sahli (LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes)
  • Received : 2022.12.20
  • Accepted : 2023.09.14
  • Published : 2023.07.25

Abstract

In this study, The Von Mises stresses in composite plate loaded in tension and repaired by a boron/epoxy scarf patch were analyzed using the finite element method. The performance of the repairs depends on several parameters: the dimensions and the intrinsic properties of the patch and the adhesive which are dependent on each other. Therefore, the method of experiment designs is used to determine the interaction effect of different parameters (patch folds), their optimum and the most influential parameter. The optimum of stacking sequences allows reducing stresses significantly, and thus permits designers to improve the quality of repairs.

Keywords

References

  1. Achache, H., Boutabout, B. and Ouinas, D. (2013), "Mechanical behavior of laminated composites with circular holes", Eng. Mater., 550, 1-8. https://doi.org/10.4028/www.scientific.net/KEM.550.1.
  2. Bakhshi, N. and Taheri-Behrooz, F. (2019), "Length effect on stress concentration factor of a perforated orthotropic composite plate under in-plane loading", Compos. Mater. Eng., 1(1), 1701-1708. https://doi.org/10.12989/cme.2019.1.1.071.
  3. Benkheira, A., Belhouari, M. and Benbarek, S. (2018), "Comparison of double and single bonded repairs to symmetrical composite structures", J Fail. Anal. Preven., 18(6), 1601-1606. https://doi.org/10.1007/s11668-018-0557-7.
  4. Breitzman, T.D., Larve, E.V., Cook, B.M., Schoeppner, G.A. and Lipton, R.P. (2009), "Optimization of composite scarf repair patch under tensile loading", Compos. Part A, 40, 1921-1930. https://doi.org/10.1016/j.compositesa.2009.04.033.
  5. Caminero, M.A., Pavlopoulou, S., Lopez-Pedrosa, M., Nicolaison, B.G., Pinna, C. and Sourtis, C. (2013), "Analysis of adhesively bonded repairs in composites: Damage detection and prognosis", Compos. Struct., 95, 500-517. https://doi.org/10.1016/j.compstruct.2012.07.028.
  6. Campilho, R.D.S.G., De Moura, M.F.S.F. and Domingues, J.J.M.S. (2007), "Stress and failure analyses of scarf repaired CFRP laminates using a cohesive damage model", J. Adhes. Sci. Technol., 23, 1493-1513. https://doi.org/10.1163/156856109X433045.
  7. Cheng, P., Gong, X.J., Aivazzadeh, S. and Xiao, X. (2014), "Experimental observation of tensile behaviour of patch repaired composites", Polym. Test, 34, 146-154. https://doi.org/10.1016/j.polymertesting.2014.01.007.
  8. Cheng, P., Gong, X.J., Hearn, D. and Aivazzadeh, S. (2011), "Tensile behaviour of patchrepaired CFRP laminates", Compos. Struct., 93, 582-589. https://doi.org/10.1016/j.compstruct.2010.08.021.
  9. Fekih, S.M., Albedah, A., Benyahia, F., Belhouari, M., Bouiadjra, B.B. and Miloudi, A. (2012), "Optimisation of the sizes of bonded composite repair in aircraft structures", Mater. Des., 41, 171-176. https://doi.org/10.1016/j.matdes.2012.04.025.
  10. Madani, K., Touzain, S., Feaugas, X., Cohendouz, S. and Ratawani, M. (2010), "Experimental and numerical study of repair techniques for panels with geometrical discontinuities", Comput. Mater. Sci., 48(1), 83-93. https://doi.org/10.1016/j.commatsci.2009.12.005.
  11. MODDE 6.0 (Modeling and Design) (2001), Umetrics AB, Umea, Sweden.eter to be Modified to Obtain an Optimal Repair.
  12. Moreira, R.D.F., De Moura, M.F.S.F., Silva, F.G.A. and Reis, J.P. (2020), "High-cycle fatigue analysis of adhesively bonded composite scarf repairs", Compos. Part B, 190, 170900. https://doi.org/10.1016/j.compositesb.2020.107900.
  13. Pierce, R.S. and Fazlon, B.G. (2019), "Modelling the size and strength benefits of optimised step/scarf joints and repairs in composite structures", Compos. Part B, 173, 107020. https://doi.org/10.1016/j.compositesb.2019.107020.
  14. Psarras, S., Loutas, T., Papanaoum, M., Triantopoulos, O.K. and Kostopoulus, V. (2020), "Investiging the effect of stepped scraf repair ratio in repaired CFRP laminates under compressive loading", J. Compos. Sci., 4, 153. https://doi.org/10.3390/jcs4040153.
  15. Ramdoun, S., Bouafia, F., Serir, B. and Fekirini, H. (2018), "Effect of residual stresses on the stress intensity factor of cracks in a metal matrix composite: Numerical analysis", Mech. Mech. Eng., 22(1), 113-125. https://doi.org/10.2478/mme-2018-0011.
  16. Tahar, T., Djeghader, D. and Redjel, B. (2022), "Mechanical properties and statistical analysis of the Charpy impact test using the Weibull distribution in jute-polyester and glass-polyester composites", Frattura ed Integrita Strutturale, 62, 326-335. https://doi.org/10.3221/IGF-ESIS62.23.
  17. Yoo, J.S., Truong, V.H., Park, M.Y., Choi, J.H. and Kweon, J.H. (2016), "Parametric study and fatigue strength recovery of scraf-patch-repair composite laminates", Compos. Struct., 140, 417-432. https://doi.org/10.1016/j.compstruct.2015.12.041.