Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT, No. RS-2022-00144431).
References
- K.A. Terrani, D. Wang, L.J. Ott, R.O. Montgomery, The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents, J. Nucl. Mater. 448 (2014) 512-519. https://doi.org/10.1016/j.jnucmat.2013.09.051
- L.J. Ott, K.R. Robb, D. Wang, Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions, J. Nucl. Mater. 448 (2014) 520-533. https://doi.org/10.1016/j.jnucmat.2013.09.052
- P.G. Medvedev, R.D. Mariani, Conductive inserts to reduce nuclear fuel temperature, J. Nucl. Mater. 531 (2020), 151966.
- W. Zhou, W. Zhou, Enhanced thermal conductivity accident tolerant fuels for improved reactor safety -A comprehensive review, Ann. Nucl. Energy 119 (2018) 66-86. https://doi.org/10.1016/j.anucene.2018.04.040
- H.S. Lee, D.S. Kim, D.J. Kim, J.H. Yang, J.H. Yoon, Y.H. Koo, K.W. Song, Numerical investigation of the thermal conductivity of UO2 - Mo microplate fuel pellets to realize enhanced heat transfer in the fuel radial direction, J. Nucl. Matter. 554 (2021), 153075.
- B. Mihaila, M. Stan, J. Crapps, D. Yun, Impact of thermal conductivity models on the coupling of heat transport oxygen diffusion, and deformation in (U, Pu)O2- x nuclear fuel elements, J. Nucl. Matter. 433 (2013) 132-142. https://doi.org/10.1016/j.jnucmat.2012.09.017
- H.S. Lee, D.J. Kim, J.H. Yang, D.R. Kim, Numerical and experimental investigation on thermal expansion of UO2-5 vol% Mo microcell pellet for qualitative comparison to UO2 pellet, J. Nucl. Matter. 518 (2019) 342-349. https://doi.org/10.1016/j.jnucmat.2019.03.003
- V. Troyanov, V. Popov, Iu Baranaev, Cermet fuel in a light water reactor: a possible way to improve safety. Part I. Fabrication and characterization, J. Prog. Nucl. Energy. 38 (2001) 267-270. https://doi.org/10.1016/S0149-1970(00)00114-1
- B.J. Lewis, R.D. MacDonald, N.V. Ivanoff, F.C. Iglesias, Fuel performance and fission product release studies for defected fuel elements, Nucl. Technol. 103 (1993) 220-245. https://doi.org/10.13182/NT93-A34845
- D.R. Olander, Y.S. Kim, W.-E. Wang, S.K. Yagnik, Steam oxidation of fuel in defective LWR rods, J. Nucl. Mater. 270 (1999) 11-20. https://doi.org/10.1016/S0022-3115(98)00759-4
- S. Yeo, E. Mckenna, R. Baney, G. Subhash, J. Tulenko, Enhanced thermal conductivity of uranium dioxide - silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS), J. Nucl. Mater. 433 (2013) 66-73. https://doi.org/10.1016/j.jnucmat.2012.09.015
- J.H. Yang, K.W. Song, K.S. Kim, Y.H. Jung, A fabrication technique for a UO2 pellet consisting of UO2 grains and a continuous W channel on the grain boundary, J. Nucl. Mater. 353 (2006) 202-208. https://doi.org/10.1016/j.jnucmat.2006.01.019
- S.C. Finkeldei, J.O. Kiggans, R.D. Hunt, A.T. Nelson, K.A. Terrani, Fabrication of UO2-Mo composite fuel with enhanced thermal conductivity from sol-gel feedstock, J. Nucl. Mater. 520 (2019) 56-64. https://doi.org/10.1016/j.jnucmat.2019.04.011
- Z. Chena, G. Subhasha, J.S. Tulenko, Spark plasma sintering of diamond-reinforced uranium dioxide composite fuel pellets, Nucl. Eng. Des. 294 (2015) 52-59. https://doi.org/10.1016/j.nucengdes.2015.08.021
- S. Ishimoto, M. Hirai, K. Ito, Y. Korei, Thermal conductivity of UO2-BeO pellet, J. Nucl. Sci. Technol. 33 (1996) 134-140. https://doi.org/10.1080/18811248.1996.9731875
- J.H. Yang, D.J. Kim, K.S. Kim, Y.H. Koo, UO2 - UN composites with enhanced uranium density and thermal conductivity, J. Nucl. Mater. 465 (2015) 509-515. https://doi.org/10.1016/j.jnucmat.2015.06.039
- B. Gong, T. Yao, P. Lei, L. Cai, K.E. Metzger, E.J. Lahoda, F.A. Boylan, A. Mohamad, J. Harp, A.T. Nelson, J. Lian, U3Si2 and UO2 composites densified by spark plasma sintering for accident-tolerant fuels, J. Nucl. Mater. 534 (2020), 152147.
- E. Kardoulaki, D.M. Frazer, J.T. White, U. Carvajal, A.T. Nelson, D.D. Byler, T. A. Saleh, B. Gong, T. Yao, J. Lian, K.J. McClellan, Fabrication and thermophysical properties of UO2 - UB2 and UO2 - UB4 composites sintered via spark plasma sintering, J. Nucl. Mater. 544 (2021), 152690.
- Y.H. Koo, J.H. Yang, J.Y. Park, K.S. Kim, H.G. Kim, D.J. Kim, Y.I. Jung, K.W. Song, KAERI's development of LWR accident-tolerant fuel, Nucl. Technol. 186 (2014) 295-304. https://doi.org/10.13182/NT13-89
- H.G. Kim, J.H. Yang, W.J. Kim, Y.H. Koo, Development status of accident-tolerant fuel for light water reactors in Korea, Nucl. Eng. Technol. 48 (2016) 1-15. https://doi.org/10.1016/j.net.2015.11.011
- D.J. Kim, K.S. Kim, D.S. Kim, J.S. Oh, J.H. Kim, J.H. Yang, Y.H. Koo, Development status of microcell UO2 pellet for accident-tolerant fuel, Nucl. Eng. Technol. 50 (2018) 253-258. https://doi.org/10.1016/j.net.2017.12.008
- J.H. Yang, K.W. Song, K.S. Kim, Y.H. Jung, A fabrication technique for a UO2 pellet consisting of UO2 grains and a continuous W channel on the grain boundary, J. Nucl. Mater. 353 (2006) 202-208. https://doi.org/10.1016/j.jnucmat.2006.01.019
- D.J. Kim, Y.W. Rhee, J.H. Kim, K.S. Kim, J.S. Oh, J.H. Yang, Y.H. Koo, K.W. Song, Fabrication of micro-cell UO2-Mo pellet with enhanced thermal conductivity, J. Nucl. Mater. 462 (2015) 289-295. https://doi.org/10.1016/j.jnucmat.2015.04.003
- H.S. Lee, D.J. Kim, S.W. Kim, J.H. Yang, Y.H. Koo, D.R. Kim, Numerical characterization of micro-cell UO2-Mo pellet for enhanced thermal performance, J. Nucl. Matter. 477 (2016) 88-94. https://doi.org/10.1016/j.jnucmat.2016.05.005
- S.C. Cheng, R.I. Vachon, The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures, Int. J. Heat Mass Tran. 12 (1969) 249-264. https://doi.org/10.1016/0017-9310(69)90009-X
- K.K. Bodla, J.Y. Murthy, S.V. Garimella, Resistance network-based thermal conductivity model for metal foams, Comput. Mater. Sci. 50 (2010) 622-632. https://doi.org/10.1016/j.commatsci.2010.09.026
- F.W. Hilty, M.R. Tonks, Development and application of a microstructure dependent thermal resistor model for UO2 reactor fuel with high thermal conductivity additives, J. Nucl. Mater. 540 (2020), 152334.
- Y.A. Cengel, A.J. Ghajar, Heat and Mass Transfer : Fundamentals and Applications, fourth ed., McGraw-Hill Co., New York, 2011.
- K.I. Bjork, J.F. Kelly, C. Vitanza, S.S. Drera, S. Holcombe, T. Tverberg, H. Tuomisto, J. Wright, M. Sarsfield, T. Blench, J.H. Yang, H.G. Kim, D.J. Kim, C.W. Lau, Irradiation testing of enhanced uranium oxide fuels, Ann. Nucl. Energy 125 (2019) 99-106. https://doi.org/10.1016/j.anucene.2018.10.050
- J.K. Fink, Thermophysical properties of uranium dioxide, J. Nucl. Mater. 279 (2000) 1-18. https://doi.org/10.1016/S0022-3115(99)00273-1
- S.I. Abu-Eishah, Correlations for the thermal conductivity of metals as a function of temperature, Int. J. Thermophys. 22 (2001) 1855-1868. https://doi.org/10.1023/A:1013155404019
- H.S. Lee, D.J. Kim, D.S. Kim, D.R. Kim, Evaluation of thermomechanical behaviors of UO2-5 vol% Mo nuclear fuel pellets with sandwiched configuration, J. Nucl. Mater. 539 (2020), 152295.