DOI QR코드

DOI QR Code

Development of a multi-modal imaging system for single-gamma and fluorescence fusion images

  • Young Been Han (Department of Senior Healthcare, Eulji University) ;
  • Seong Jong Hong (Department of Senior Healthcare, Eulji University) ;
  • Ho-Young Lee (Department of Nuclear Medicine, Seoul National University Bundang Hospital) ;
  • Seong Hyun Song (Department of Senior Healthcare, Eulji University)
  • Received : 2022.09.08
  • Accepted : 2023.06.29
  • Published : 2023.10.25

Abstract

Although radiation and chemotherapy methods for cancer therapy have advanced significantly, surgical resection is still recommended for most cancers. Therefore, intraoperative imaging studies have emerged as a surgical tool for identifying tumor margins. Intraoperative imaging has been examined using conventional imaging devices, such as optical near-infrared probes, gamma probes, and ultrasound devices. However, each modality has its limitations, such as depth penetration and spatial resolution. To overcome these limitations, hybrid imaging modalities and tracer studies are being developed. In a previous study, a multi-modal laparoscope with silicon photo-multiplier (SiPM)-based gamma detection acquired a 1 s interval gamma image. However, improvements in the near-infrared fluorophore (NIRF) signal intensity and gamma image central defects are needed to further evaluate the usefulness of multi-modal systems. In this study, an attempt was made to change the NIRF image acquisition method and the SiPM-based gamma detector to improve the source detection ability and reduce the image acquisition time. The performance of the multi-modal system using a complementary metal oxide semiconductor and modified SiPM gamma detector was evaluated in a phantom test. In future studies, a multi-modal system will be further optimized for pilot preclinical studies.

Keywords

Acknowledgement

This research was supported by grants from National Research Foundation (NRF) of Korea of the Ministry of Science, ICT, and Future Planning, Nuclear R&D Program (NRF-2020R1F1A1054317); Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (KMDF_PR_20200901_0028, 1711137956); Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (KMDF_PR_20200901_0087, 1711138120).

References

  1. Z. Zhang, K. He, C. Chi, Z. Hu, J. Tian, Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China, Eur. J. Nucl. Med. Mol. Imag. 49 (8) (2022) 2531-2543. https://doi.org/10.1007/s00259-022-05730-y
  2. Moiyadi Av, Intraoperative ultrasound technology in neuro-oncology practice-current role and future applications, World Neurosurg 93 (2016) 81-93. https://doi.org/10.1016/j.wneu.2016.05.083
  3. R. Baio, O. Intilla, U. Di Mauro, U. Pane, G. Molisso, R. Snaseverino, Near-infrared fluorescence imaging with intraoperative administration of indocyanine green for laparoscopic radical prostatectomy: is it a useful weapon for pelvic lymph node dissection? J. Surg. Case Rep. 2022 (3) (2022) rjab614.
  4. M. Al-Taher, J. van den Bos, I. Terink, S. van Kuijk, N. van Hanegem, N. Bouvy, et al., Near-infrared fluorescence imaging for the intraoperative detection of endometriosis: a pilot study, Life 12 (1) (2021) 15.
  5. G.M. Kalisvaart, R.P.J. Meijer, O.D. Bijlstra, H.A. Galema, W.O. de Steur, H.H. Hartgrink, et al., Intraoperative near-infrared fluorescence imaging with indocyanine green for identification of gastrointestinal stromal tumors (GISTs), a feasibility study, Cancers 14 (6) (2022) 1572.
  6. G. Piccolo, M. Barabino, A. Pesce, M. Diana, F. Lecchi, R. Santambrogio, et al., Role of indocyanine green fluorescence imaging in minimally invasive resection of colorectal liver metastases, Surg. Laparosc. Endosc. Percutaneous Tech. 32 (2) (2022) 259-265. https://doi.org/10.1097/SLE.0000000000001037
  7. S.L. Troyan, V. Kianzad, S.L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, et al., The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping, Ann. Surg Oncol. 16 (10) (2009) 2943-2952. https://doi.org/10.1245/s10434-009-0594-2
  8. M. Ekman, S. Girnyi, L. Marano, F. Roviello, M. Chand, M. Diana, et al., Near-infrared fluorescence image-guided surgery in esophageal and gastric cancer operations, Surg. Innovat. 29 (4) (2022) 540-549. https://doi.org/10.1177/15533506211073417
  9. Z. Ma, M. Zhang, J. Yue, C. Alcazar, Y. Zhong, T.C. Doyle, et al., Near-infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution, Adv. Funct. Mater. 28 (36) (2018), 1803417.
  10. Y. Ashitate, A. Stockdale, H.S. Choi, R.G. Laurence, J.V. Frangioni, Real-time simultaneous near-infrared fluorescence imaging of bile duct and arterial anatomy, J. Surg. Res. 176 (1) (2012) 7-13. https://doi.org/10.1016/j.jss.2011.06.027
  11. D.S. Keller, H.M. Joshi, M. Rodriguez-Justo, D. Walsh, J.C. Coffey, M. Chand, Using fluorescence lymphangiography to define the ileocolic mesentery: proof of concept for the watershed area using real-time imaging, Tech. Coloproctol. 21 (9) (2017) 757-760. https://doi.org/10.1007/s10151-017-1677-x
  12. M. Yu, J. Liu, X. Ning, J. Zheng, High-contrast noninvasive imaging of kidney clearance kinetics enabled by renal clearable nanofluorophores, Angew Chem. Int. Ed. Engl. 54 (51) (2015) 15434e15438.
  13. E.J. Aslim, F.J. Lee, V.H.L. Gan, The utility of intraoperative near infrared fluorescence (NIR) imaging with indocyanine green (ICG) for the assessment of kidney allograft perfusion, J Transplant 2018 (2018), 6703056.
  14. T. Tadokoro, H. Tahara, S. Kuroda, T. Kobayashi, K. Tanabe, H. Ohdan, Hepatic resection using intraoperative ultrasound and near-infrared imaging with indocyanine green fluorescence detects hepatic metastases from gastric cancer: a case report, Int J Surg Case Rep 91 (2022), 106791.
  15. A.L. Vahrmeijer, M. Hutteman, J.R. van der Vorst, C.J. van de Velde, J.V. Frangioni, Image-guided cancer surgery using near-infrared fluorescence, Nat. Rev. Clin. Oncol. 10 (2013) 507-518. https://doi.org/10.1038/nrclinonc.2013.123
  16. J.A. Carr, D. Franke, J.R. Caram, C.F. Perkinson, M. Saif, V. Askoxylakis, et al., Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 4465-4470. https://doi.org/10.1073/pnas.1718917115
  17. S. Zhu, B.C. Yung, S. Chandra, G. Niu, A.L. Antaris, X. Chen, Near-infrared-II (NIR-II) bioimaging via off-peak NIR-I fluorescence emission, Theranostics 8 (2018) 4141-4151. https://doi.org/10.7150/thno.27995
  18. C. Li, Q. Wang, Advanced NIR-II fluorescence imaging technology for in vivo precision tumor theranostics, Adv. Therapeutics 2 (2019).
  19. Masatoshi Makuuchi, Torzilli Guido, J. Machi, History of intraoperative ultrasound, Ultrasound Med. Biol. 24 (1998) 14.
  20. M. Ganau, N. Syrmos, A.R. Martin, F. Jiang, M.G. Fehlings, Intraoperative ultrasound in spine surgery: history, current applications, future developments, Quant. Imag. Med. Surg. 8 (2018) 261-267. https://doi.org/10.21037/qims.2018.04.02
  21. Meghan G. Lubner, Lori Mankowski Gettle, David H. Kim, J. Timothy, N.D. Ziemlewicz, P. Pickhardt, Diagnostic and procedural intraoperative ultrasound_technique, tips and tricks for optimizing results, Br. J. Radiol. 94 (2021) 10.
  22. A. Bartos, I. Iancu, L. Ciobanu, R. Badea, Z. Sparchez, D.M. Bartos, Intraoperative ultrasound in liver and pancreatic surgery, Med. Ultrason. 23 (2021) 319-328.
  23. M. Sebastian, J. Rudnicki, Recommendation for cholecystectomy protocol based on intraoperative ultrasound - a single-centre retrospective case-control study, Wideochir Inne Tech Maloinwazyjne 16 (2021) 54-61.
  24. L. Dixon, A. Lim, M. Grech-Sollars, D. Nandi, S. Camp, Intraoperative ultrasound in brain tumor surgery: a review and implementation guide, Neurosurg. Rev. 45 (4) (2022) 2503-2515. https://doi.org/10.1007/s10143-022-01778-4
  25. D.J. Deziel, Laparoscopic ultrasound for bile duct imaging during cholecystectomy: clinical impact in 785 consecutive cases, J. Am. Coll. Surg. 234 (2022) 849-860. https://doi.org/10.1097/XCS.0000000000000111
  26. A. Steno, J. Buvala, V. Babkova, A. Kiss, D. Toma, A. Lysak, Current limitations of intraoperative ultrasound in brain tumor surgery, Front. Oncol. 11 (2021), 659048.
  27. M.-I. Argentou, E. Iliopoulos, G.-I. Verras, F. Mulita, L. Tchabashvili, T. Spyridonidis, et al., Study on intraoperative localization of sentinel lymph nodes using freehand SPECT in breast cancer patients, in: Videosurgery and Other Miniinvasive Techniques/Wideochirurgia I Inne Techniki Maloinwazyjne, 2022.
  28. F. Collamati, R. Valdes Olmos, A. Albanese, F. Cocciolillo, D. Di Giuda, A. Collarino, Current use and potential role of radioguided surgery in brain tumours, Clinical and Translational Imaging 10 (2022) 451-456. https://doi.org/10.1007/s40336-022-00503-x
  29. P. Meershoek, M.N. van Oosterom, H. Simon, L. Mengus, T. Maurer, P.J. van Leeuwen, et al., Robot-assisted laparoscopic surgery using DROP-IN radioguidance: first-in-human translation, Eur. J. Nucl. Med. Mol. Imag. 46 (2019) 49-53. https://doi.org/10.1007/s00259-018-4095-z
  30. M. Takahashi, S. Yoshimura, S. Takyu, S. Aikou, Y. Okumura, K. Yagi, et al., A design of forceps-type coincidence radiation detector for intraoperative LN diagnosis: clinical impact estimated from LNs data of 20 esophageal cancer patients, Ann. Nucl. Med. 36 (2022) 285-292. https://doi.org/10.1007/s12149-021-01701-9
  31. M. Ahmed, A.D. Purushotham, M. Douek, Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review, Lancet Oncol. 15 (2014) e351-e362. https://doi.org/10.1016/S1470-2045(13)70590-4
  32. F. Giammarile, S. Vidal-Sicart, D. Paez, O. Pellet, E.L. Enrique, M. Mikhail-Lette, et al., Sentinel lymph node methods in breast cancer, Semin. Nucl. Med. 52 (5) (2022) 551-560. https://doi.org/10.1053/j.semnuclmed.2022.01.006
  33. S.P. Povoski, R.L. Neff, C.M. Mojzisik, D.M. O'Malley, G.H. Hinkle, N.C. Hall, et al., A comprehensive overview of radioguided surgery using gamma detection probe technology, World J. Surg. Oncol. 7 (2009) 11.
  34. S.L. Bugby, J.E. Lees, A.C. Perkins, Hybrid intraoperative imaging techniques in radioguided surgery: present clinical applications and future outlook, Clin Transl Imaging 5 (2017) 323-341. https://doi.org/10.1007/s40336-017-0235-x
  35. M.N. Van Oosterom, D.D.D. Rietbergen, M.M. Welling, H.G. Van Der Poel, T. Maurer, F.W.B. Van Leeuwen, Recent advances in nuclear and hybrid detection modalities for image-guided surgery, Expet Rev. Med. Dev. 16 (2019) 711-734. https://doi.org/10.1080/17434440.2019.1642104
  36. I. Blanco Saiz, P. Salvador Egea, E. Anda Apinaniz, N. Rudic Chipe, E. Goni Girones, Radio-guided procedure in minimally invasive surgery for primary hyperparathyroidism, Cir. Esp. 101 (3) (2023) 152-159. https://doi.org/10.1016/j.ciresp.2022.07.008
  37. A. Omata, M. Masubuchi, N. Koshikawa, J. Kataoka, H. Kato, A. Toyoshima, et al., Multi-modal 3D imaging of radionuclides using multiple hybrid Compton cameras, Sci. Rep. 12 (2022) 2546.
  38. A. Garcia-Uribe, T.N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, et al., Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer, Sci. Rep. 5 (2015), 15748.
  39. J. Kang, J.H. Chang, S.M. Kim, H.J. Lee, H. Kim, B.C. Wilson, et al., Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction, Sci. Rep. 7 (2017), 45008.
  40. Paolo Dell'Oglio, Hielke M de Vries, Elio Mazzone, Gijs H. KleinJan, Maarten L. Donswijk, Henk G. van der Poel, et al., Hybrid indocyanine green-99mTcnanocolloid for single-photon emission computed tomography and combined radio- and fluorescence-guided sentinel node biopsy in penile cancer: results of 740 inguinal basins assessed at a single institution, Eur. Urol. 78 (6) (2020) 865-872. https://doi.org/10.1016/j.eururo.2020.09.007
  41. H.G. Kang, H.Y. Lee, K.M. Kim, S.H. Song, G.C. Hong, S.J. Hong, A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping, Med. Phys. 44 (2017) 227-239. https://doi.org/10.1002/mp.12029
  42. S.H. Song, H.G. Kang, Y.B. Han, H.Y. Lee, D.H. Jeong, S.M. Kim, et al., Characterization and validation of multimodal annihilation-gamma/near-infrared/visible laparoscopic system, J. Biomed. Opt. 24 (2019) 1-11. https://doi.org/10.1117/1.JBO.24.9.096008
  43. Y.B. Han, S.H. Song, H.G. Kang, H.Y. Lee, S.J. Hong, SiPM-based gamma detector with a central GRIN lens for a visible/NIRF/gamma multi-modal laparoscope, Opt Express 29 (2021) 2364-2377. https://doi.org/10.1364/OE.415732
  44. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, et al., GATE: a simulation toolkit for PET and SPECT, Phys. Med. Biol. 49 (2004) 4543-4561. https://doi.org/10.1088/0031-9155/49/19/007
  45. Jonathan I. Gear, Taprogge Jan, Owen White, Glenn D. Flus, Characterisation of the attenuation properties of 3D-printed tungsten for use in gamma camera collimation, EJNMMI Phys 6 (1) (2019) 1.
  46. S. Siegel, R.W. Silverman, Y. Shao, S.R. Cherry, Simple charge division readouts for imaging scintillator array using a multi-channel PMT, IEEE Trans. Nucl. Sci. 43 (1996) 1634-1641. https://doi.org/10.1109/23.507162
  47. F. Aurenhammer, Voronoi Diagrams - a survey of a fundamental geometric data structure, ACM Comput. Surv. 23 (3) (1991) 345-405. https://doi.org/10.1145/116873.116880
  48. Jacqueline van den Bos, Fokko P. Wieringa, Nicole D. Bouvy, P. Laurents, S. Stassen, Optimizing the image of fluorescence cholangiography using ICG: a systematic review and ex vivo experiments, Surg. Endosc. 32 (12) (2018) 4820-4832. https://doi.org/10.1007/s00464-018-6233-x
  49. Puxiang Lai, Xiao Xu, V. Lihong, Wang, Dependence of optical scattering from intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time, J. Biomed. Opt. 19 (3) (2014), 035002.
  50. S. Hernandez Vargas, S.C. Ghosh, A. Azhdarinia, New developments in dual-labeled molecular imaging agents, J. Nucl. Med. 60 (2019) 459-465. https://doi.org/10.2967/jnumed.118.213488
  51. F.W.B. van Leeuwen, M. Schottelius, O.R. Brouwer, S. Vidal-Sicart, S. Achilefu, J. Klode, et al., Trending: radioactive and fluorescent bimodal/hybrid tracers as multiplexing solutions for surgical guidance, J. Nucl. Med. 61 (2020) 13-19. https://doi.org/10.2967/jnumed.119.228684
  52. Elio Mazzone, Paolo Dell'Oglio, Nikos Grivas, Esther Wit, Maarten Donswijk, Alberto Briganti, et al., Diagnostic value, oncologic outcomes, and safety profile of image-guided surgery technologies during robot-assisted lymph node dissection with sentinel node biopsy for prostate cancer, J. Nucl. Med. 62 (10) (2021) 1363-1371. https://doi.org/10.2967/jnumed.120.259788
  53. S.L. Bugby, J.E. Lees, A.H. Ng, M.S. Alqahtani, A.C. Perkins, Investigation of an SFOV hybrid gamma camera for thyroid imaging, Phys. Med. 32 (2016) 290-296. https://doi.org/10.1016/j.ejmp.2015.12.002
  54. H.G. Kang, S.H. Song, Y.B. Han, H.Y. Lee, K.M. Kim, S.J. Hong, Proof-of-concept of a multimodal laparoscope for simultaneous NIR/gamma/visible imaging using wavelength division multiplexing, Opt Express 26 (2018) 8325-8339. https://doi.org/10.1364/OE.26.008325
  55. P. Olcott, G. Pratx, D. Johnson, E. Mittra, R. Niederkohr, C.S. Levin, Clinical evaluation of a novel intraoperative handheld gamma camera for sentinel lymph node biopsy, Phys. Med. 30 (2014) 340-345. https://doi.org/10.1016/j.ejmp.2013.10.005
  56. M.S. Demarchi, B. Seeliger, J.C. Lifante, P.F. Alesina, F. Triponez, Fluorescence image-guided surgery for thyroid cancer: utility for preventing hypoparathyroidism, Cancers 13 (2021).
  57. D. Eu, M.J. Daly, J.C. Irish, Imaging-based navigation technologies in head and neck surgery, Curr. Opin. Otolaryngol. Head Neck Surg. 29 (2021) 149-155. https://doi.org/10.1097/MOO.0000000000000686