Acknowledgement
This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2106034).
References
- D. Nguyen, B. Thusa, H.S. Park, M.S. Azad, T.H. Lee, Efficiency of various structural modeling shemes on evaluating seismic performance and fragility of APR 1400 containment building, Nucl. Eng. Technol. 53 (8) (2021) 2696-2707. https://doi.org/10.1016/j.net.2021.02.006
- L. Tong, X. Zhou, X. Cao, Ultimate pressure bearing capacity analysis for the prestressed concrete containment, Ann. Nucl. Energy 121 (2018) 582-593, https://doi.org/10.1016/j.anucene.2018.08.020.
- Y.S. Choun, H.K. Park, Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement, Nucl. Eng. Technol. 47 (7) (2015) 884-894. https://doi.org/10.1016/j.net.2015.07.003
- J. Yan, Y. Lin, Z. Wang, T. Fang, J. Ma, Failure mechanism of a prestressed concrete containment vessel in nuclear power plant subjected to accident internal pressure, Ann. Nucl. Energy 133 (2019) 610-622. https://doi.org/10.1016/j.anucene.2019.07.013
- D. Twidale, R. Crowder, Sizewell 'B'-a one tenth scale containment model test for the UK PWR programme, Nucl. Eng. Des. 125 (1) (1991) 85-93, https://doi.org/10.1016/0029-5493(91)90008-6.
- M.F. Hessheimer, E.W. Klamerus, L.D. Lambert, G.S. Rightley, R.A. Dameron, Overpressurization Test of a 1:4-scale Prestressed Concrete Containment Vessel Model. Technical Report No. NUREG/CR-6810, SAND2003-0840P, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2003.
- M.F. Hessheimer, R.A. Dameron, Containment Integrity Research at Sandia National Laboratories-An Overview. Technical Report No. NUREG/CR-6906, SAND2006-2274P, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2006.
- S. Ghavamian, A. Courtois, J.L. Valfort, Mechanical simulations of SANDIA II tests OECD ISP 48 benchmark, Nucl. Eng. Des. 237 (12-13) (2007) 1406-1418, https://doi.org/10.1016/j.nucengdes.2006.10.012.
- R.M. Parmar, T. Singh, I. Thangamani, N. Trivedi, R.K. Singh, Over-pressure test on BARCOM pre-stressed concrete containment, Nucl. Eng. Des. 269 (2014) 177-183, https://doi.org/10.1016/j.nucengdes.2013.08.027.
- A. Shokoohfar, A. Rahai, Nonlinear analysis of pre-stressed concrete containment vessel (PCCV) using the damage plasticity model, Nucl. Eng. Des. 298 (2016) 41-50, https://doi.org/10.1016/j.nucengdes.2015.12.019.
- P. Bily, A. Kohoutkova, An estimation of the effect of steel liner on the ultimate bearing capacity of prestressed concrete containment, Nucl. Eng. Des. 328 (2018) 197-208, https://doi.org/10.1016/j.nucengdes.2017.12.026.
- Z. Zheng, Y. Sun, X. Pan, C. Su, J. Kong, The optimum steel fiber reinforcement for prestressed concrete containment under internal pressure, Nucl. Eng. Technol. 54 (6) (2022) 2156-2172. https://doi.org/10.1016/j.net.2021.12.015
- Q. Pu, H. Wang, H. Gou, Y. Bao, M. Yan, Fatigue behavior of prestressed concrete beam for straddle-type monorail tracks, Appl. Sci. 8 (7) (2018), https://doi.org/10.3390/app8071136.
- E. Hognestad, A Study on Combined Bending and Axial Load in Reinforced Concrete Members, University of Illinois at Urbana-Champaign, IL, Bulletin, 1951, pp. 43-46.
- O. Martin, Comparison of Different Constitutive Models for Concrete in ABAQUS/Explicit for Missile Impact Analyses. JRC Scientific and Technical Reports EUR 24151 EN-2010, European Commission Joint Research Centre Institute for Energy, Westerduinweg, Netherland, 2010.
- S. Alhanaee, Y. Yi, A. Schiffer, Ultimate pressure capacity of nuclear reactor containment building under unaged and aged conditions, Nucl. Eng. Des. 335 (2018) 128-139, https://doi.org/10.1016/j.nucengdes.2018.05.017.
- B.W. Spencer, J.P. Petti, D.M. Kunsman, Risk-Informed Assessment of Degraded Containment Vessels, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2006. Technical Report No. NUREG/CR-6920, SAND2006-3772P.
- J. Izumo, H. Shima, H. Okamura, Analytical Model for RC Panel Elements Subjected to In-Plane Forces, vol. 12, Concrete Library Japan Society of Civil Engineers, 1989, pp. 155-181.
- JSCE, JSCE Guideline for Concrete No. 16, Standard Specifications for Concrete Structures e Materials and Constructions, Concrete Committee of Japan Society of Civil Engineers, Japan, 2007.
- ABAQUS-6.12, ABAQUS Analysis User's Manual. ABAQUS 6.12, Dassault Systemes Simulia Corp., Providence, RI, USA, 2018.
- L. Zhou, J. Li, H. Zhong, G. Lin, Z. Li, Fragility comparison analysis of CPR 1000 PWR containment subjected to internal pressure, Nucl. Eng. Des. 330 (2018) 250-264, https://doi.org/10.1016/j.nucengdes.2018.02.005.
- Regulatory Guide 1, Containment Structural Integrity Evaluation for Internal Pressure Loadings above Design Basis Pressure, U.S. Nuclear Regulatory Commission, Rockville, MD, USA, 2010, 216.
- J.L. Cherry, J.A. Smith, Capacity of Steel and Concrete Containment Vessels with Corrosion Damage. Technical Report No. NUREG/CR-6706, SAND2000-1735, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2001.
- J.W. Hancock, A.C. Mackenzie, On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress states, J. Mech. Phys. Solid. 24 (1976) 147-169. https://doi.org/10.1016/0022-5096(76)90024-7
- S. Jin, Z. Li, T. Lan, J. Gong, Fragility analysis of prestressed concrete containment under severe accident condition, Ann. Nucl. Energy 131 (2019) 242-256, https://doi.org/10.1016/j.anucene.2019.03.034.