DOI QR코드

DOI QR Code

SEM-based study on the impact of safety culture on unsafe behaviors in Chinese nuclear power plants

  • Licao Dai (Human Factor Institute, University of South China) ;
  • Li Ma (Human Factor Institute, University of South China) ;
  • Meihui Zhang (Human Factor Institute, University of South China) ;
  • Ziyi Liang (Human Factor Institute, University of South China)
  • 투고 : 2022.12.02
  • 심사 : 2023.06.16
  • 발행 : 2023.10.25

초록

This paper uses 135 Licensed Operator Event Reports (LOER) from Chinese nuclear plants to analyze how safety culture affects unsafe behaviors in nuclear power plants. On the basis of a modified human factors analysis and classification system (HFACS) framework, structural equation model (SEM) is used to explore the relationship between latent variables at various levels. Correlation tests such as chi-square test are used to analyze the path from safety culture to unsafe behaviors. The role of latent error is clarified. The results show that the ratio of latent errors to active errors is 3.4:1. The key path linking safety culture weaknesses to unsafe behaviors is Organizational Processes → Inadequate Supervision → Physical/Technical Environment → Skill-based Errors. The most influential factors on the latent variables at each level in the HFACS framework are Organizational Processes, Inadequate Supervision, Physical Environment, and Skill-based Errors.

키워드

참고문헌

  1. G. John, Kemeny. Report of the Presidents Commission on Three Mile Island, US Government Accounting Office, Washington, D.C., 1979.
  2. International Nuclear Safety Advisory Group, Basic Safety Principles for Nuclear Power Plants, Safety Series No. 75-INSAG-3, International Atomic Energy Agency, Vienna, 1988.
  3. IAEA, Human and Organizational Factors in Nuclear Safety in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant, International Experts Meeting, Vienna, May 2013, pp. 21-24.
  4. J.N. Sorensen, Safety culture: a survey of the state-of-the-art, Reliab. Eng. Syst. Saf. 76 (2) (2002) 189-204. https://doi.org/10.1016/S0951-8320(02)00005-4
  5. Y.Q. Zhong, A Threefold approach to building a nuclear power safety culture, China Nucl. Ind. 9 (2012) 56-57.
  6. INSAG, Safety Culture, Safety Series No. 75-INSAG 4, IAEA International Nuclear Safety Advisory Group, 1991.
  7. F.W. Guldenmund, The nature of safety culture: a review of theory and research, Saf. Sci. 34 (2000) 215-257. https://doi.org/10.1016/S0925-7535(00)00014-X
  8. L. Ostrom, C. Wilhelmsen, B. Kaplan, Assessing safety culture, Nucl. Saf. 34 (2) (1993) 163-172.
  9. R.M. Choudhry, D.P. Fang, M. Sherif, Developing a model of construction safety culture, J. Manag. Eng. 23 (4) (2007) 207-212. https://doi.org/10.1061/(ASCE)0742-597X(2007)23:4(207)
  10. G. Hofstede, Culture's Consequences: Comparing Values, Behaviors, Institutions, and Organizations across Nations, second ed., Sage, Thousand Oaks, CA, 2001.
  11. H.R. Van, The meaning of organizational culture: an overview of the literature, M&O, Tijdschrift voor Organisatiekunde en Sociaal Beleid 1 (1988) 4-46.
  12. Terence Lee, Assessment of safety culture at a nuclear reprocessing plant, Work. Stress 12 (3) (1998) 217-237. https://doi.org/10.1080/02678379808256863
  13. A.A. Marcus, M.L. Nichols, P. Bromiley, J. Olson, R.N. Osborn, W. Scott, P. Pelto, J. Thurber, Organization and safety in nuclear power plants. No. NUREG/CR5437, in: Nuclear Regulatory Commission, Washington, DC (USA). Div. of Systems Research; Minnesota Univ., Strategic Management Research Center, Minneapolis, MN (USA), 1990.
  14. S. Haber, et al., Influence of Organizational Factors on Performance Reliability (NUREG/CR-5538), US Nuclear Regulatory Commission (NRC), Washington, DC, USA, 1991.
  15. Keyvan Davoudian, Jya-Syin Wu, Apostolakis George, The work process analysis model (WPAM), Reliab. Eng. Syst. Saf. 45 (1994) 107-125. https://doi.org/10.1016/0951-8320(94)90080-9
  16. J. Reason, Human Error, Cambridge University Press, 1990.
  17. E. Hollnagel, Cognitive Reliability and Error Analysis Method (CREAM), Elsevier, 1998.
  18. D.D. Woods, et al., Behind Human Error: Cognitive Systems, Computers and Hindsight, Dayton Univ Research Institution (Urdi) OH, 1994.
  19. J. Reason, Managing the Risks of Organizational Accidents, Ashgate, 1997.
  20. R.M. Choudhry, D.P. Fang, M. Sherif, The nature of safety culture: a survey of the state-of-the-art, Saf. Sci. 45 (10) (2007) 993-1012. https://doi.org/10.1016/j.ssci.2006.09.003
  21. S.A. Shappell, A.W. Douglas, HFACS analysis of military and civilian aviation accidents: a North American comparison, in: Proceedings of the Annual Meeting of the International Society of Air Safety Investigators, Gold Coast, Australia, 2004.
  22. A.W. Douglas, S.A. Shappell, Human Error Analysis of Commercial Aviation Accidents Using the Human Factors Analysis and Classification System (HFACS). No. DOT/FAA/AM-01/3, United States. Office of Aviation Medicine, 2001.
  23. S. Reinach, V. Alex, Application of a human error framework to conduct train accident/incident investigations, Accid. Anal. Prev. 38 (2) (2006) 396-406. https://doi.org/10.1016/j.aap.2005.10.013
  24. S.A. Shappell, A.W. Douglas, Applying Reason: the Human Factors Analysis and Classification System (HFACS), Human Factors and Aerospace Safety, 2001.
  25. R. Madigan, G. David, M. Richard, Application of human factors analysis and classification system (HFACS) to UK rail safety of the line incidents, Accid. Anal. Prev. 97 (2016) 122-131. https://doi.org/10.1016/j.aap.2016.08.023
  26. V. Yesilbas, The Relationship Among HFACS Levels and Analysis of Human Factors in Unmanned and Manned Air Vehicles, Old Dominion University, 2014.
  27. C. Chauvin, et al., Human and organizational factors in maritime accidents: analysis of collisions at sea using the HFACS, Accid. Anal. Prev. 59 (2013) 26-37. https://doi.org/10.1016/j.aap.2013.05.006
  28. J.M. Patterson, S.A. Shappell, Operator error and system deficiencies: analysis of 508 mining incidents and accidents from Queensland, Australia using HFACS, Accid. Anal. Prev. 42 (4) (2010) 1379-1385. https://doi.org/10.1016/j.aap.2010.02.018
  29. S.K. Kim, et al., An investigation on unintended reactor trip events in terms of human error hazards of Korean nuclear power plants, Ann. Nucl. Energy 65 (2014) 223-231. https://doi.org/10.1016/j.anucene.2013.11.009
  30. Young Sik Yoon, Dong-Han Ham, Wan Chul Yoon, A new approach to analyzing human-related accidents by combined use of HFACS and activity theory-based method, Cognit. Technol. Work 19 (2017) 759-783. https://doi.org/10.1007/s10111-017-0433-3
  31. M. Karthick, T. Paul Robert, C. Senthil Kumar, HFACS-based FAHP implementation to identify critical factors influencing human error occurrence in nuclear plant control room, Soft Comput. 24 (2020) 16577-16591. https://doi.org/10.1007/s00500-020-04961-1
  32. Y.F. Wang, et al., Accident analysis model based on Bayesian network and evidential reasoning approach, J. Loss Prev. Process. Ind. 26 (1) (2013) 10-21. https://doi.org/10.1016/j.jlp.2012.08.001
  33. Yu-Lin Hsiao, et al., Predictive models of safety based on audit findings: Part 2: measurement of model validity, Appl. Ergon. 44 (4) (2013) 659-666. https://doi.org/10.1016/j.apergo.2013.01.003
  34. Q.J. Zhan, Wei Zheng, Bobo Zhao, A hybrid human and organizational analysis method for railway accidents based on HFACS-Railway Accidents (HFACSRAs), Saf. Sci. 91 (2017) 232-250. https://doi.org/10.1016/j.ssci.2016.08.017
  35. K.G. Joreskog, Sorbom Dag, Recent developments in structural equation modeling, J. Market. Res. 19 (4) (1982) 404-416. https://doi.org/10.1177/002224378201900402
  36. K.G. Joreskog, Sorbom Dag, LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language, Scientific Software International, 1993.
  37. C.S. Lu, Tsai Chaur-Luh, The effect of safety climate on seafarers' safety behaviors in container shipping, Accid. Anal. Prev. 42 (6) (2010) 1999-2006. https://doi.org/10.1016/j.aap.2010.06.008
  38. Tor-Olav Naevestad, et al., Safety culture in maritime transport in Norway and Greece: exploring national, sectorial and organizational influences on unsafe behaviours and work accidents, Mar. Pol. 99 (2019) 1-13. https://doi.org/10.1016/j.marpol.2018.10.001
  39. T. Kim, Are Kristoffer Sydnes, Batalden Bjorn-Morten, Development and validation of a safety leadership Self-Efficacy Scale (SLSES) in maritime context, Saf. Sci. 134 (2021), 105031.
  40. Bjorn Saetrevik, W.H. Sigurd, Situation awareness as a determinant for unsafe actions and subjective risk assessment on offshore attendant vessels, Saf. Sci. 93 (2017) 214-221. https://doi.org/10.1016/j.ssci.2016.12.012
  41. X.X. Zhang, et al., Dynamics simulation of the risk coupling effect between maritime pilotage human factors under the HFACS framework, J. Mar. Sci. Eng. 8 (2) (2020) 144.
  42. Barbara M. Byrne, Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming, Routledge, 2013.
  43. M.C. Wang, X.Y. Bi, Latent Variable Modelling and Mplus Application (Chinese Edition), Chongqing University Press, China, 2018.
  44. K. Pearson, LIII. On lines and planes of closest fit to systems of points in space, London, Edinburgh Dublin Phil. Mag. J. Sci. 2 (11) (1901) 559-572. https://doi.org/10.1080/14786440109462720
  45. J.L. Zhou, Lei Yi, Paths between latent and active errors: analysis of 407 railway accidents/incidents' causes in China, Saf. Sci. 110 (2018) 47-58. https://doi.org/10.1016/j.ssci.2017.12.027
  46. J.L. Zhou, Z.H. Bai, Z.Y. Sun, A hybrid approach for safety assessment in high-risk hydropower-construction-project work systems, Saf. Sci. 64 (2014) 163-172. https://doi.org/10.1016/j.ssci.2013.12.008
  47. L. Guttman, A basis for scaling qualitative data, Am. Socio. Rev. 9 (2) (1944) 139-150. https://doi.org/10.2307/2086306
  48. L. Guttman, Multiple rectilinear prediction and the resolution into components, Psychometrika 5 (2) (1940) 75-99. https://doi.org/10.1007/BF02287866
  49. A. Leo, Goodman William H Kruskal, Measures of Association for Cross Classifications, Springer, New York, 1979.
  50. Bengt O. Muthen, Goodness of fit with categorical and other nonnormal variables, SAGE Focus Ed. 154 (1993), 205-205.
  51. B.P. Hallbert, D.I. Gertman, Review of Findings for Human Error Contribution to Risk in Operating Events, NUREG INEEL/EXT-01-01166, Office of Nuclear Regulatory Research Division of Systems Analysis and Regulatory Effectiveness, US Nuclear Regulatory Commission, Washington, DC, 2001, p. 107.