DOI QR코드

DOI QR Code

Estimation of frost durability of recycled aggregate concrete by hybridized Random Forests algorithms

  • Rui Liang (School of Architecture and Urban Planning, Guangdong University of Technology) ;
  • Behzad Bayrami (Department of Civil Engineering, Moghadas Ardabili Institute of Higher Education)
  • Received : 2023.06.08
  • Accepted : 2023.10.04
  • Published : 2023.10.10

Abstract

An effective approach to promoting sustainability within the construction industry is the use of recycled aggregate concrete (RAC) as a substitute for natural aggregates. Ensuring the frost resilience of RAC technologies is crucial to facilitate their adoption in regions characterized by cold temperatures. The main aim of this study was to use the Random Forests (RF) approach to forecast the frost durability of RAC in cold locations, with a focus on the durability factor (DF) value. Herein, three optimization algorithms named Sine-cosine optimization algorithm (SCA), Black widow optimization algorithm (BWOA), and Equilibrium optimizer (EO) were considered for determing optimal values of RF hyperparameters. The findings show that all developed systems faithfully represented the DF, with an R2 for the train and test data phases of better than 0.9539 and 0.9777, respectively. In two assessment and learning stages, EO - RF is found to be superior than BWOA - RF and SCA - RF. The outperformed model's performance (EO - RF) was superior to that of ANN (from literature) by raising the values of R2 and reducing the RMSE values. Considering the justifications, as well as the comparisons from metrics and Taylor diagram's findings, it could be found out that, although other RF models were equally reliable in predicting the the frost durability of RAC based on the durability factor (DF) value in cold climates, the developed EO - RF strategy excelled them all.

Keywords

References

  1. Abbas, A., Fathifazl, G., Isgor, O.B., Razaqpur, A.G., Fournier, B. and Foo, S. (2009), "Durability of recycled aggregate concrete designed with equivalent mortar volume method", Cement Concrete Compos., 31(8), 555-563. https://doi.org/10.1016/j.cemconcomp.2009.02.012.
  2. Abellan-Garcia, J. and Guzman-Guzman, J. S. (2021), "Random forest-based optimization of UHPFRC under ductility requirements for seismic retrofitting applications", Construct. Build. Mater., 285, 122869. https://doi.org/10.1016/j.conbuildmat.2021.122869.
  3. Ahmadianfar, I., Heidari, A.A., Gandomi, A.H., Chu, X. and Chen, H. (2021), "RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method", Expert Syst. Appl., 181, 115079. https://doi.org/10.1016/j.eswa.2021.115079.
  4. Ahmadianfar, I., Heidari, A.A., Noshadian, S., Chen, H. and Gandomi, A.H. (2022), "INFO: An efficient optimization algorithm based on weighted mean of vectors", Expert Syst. Appl., 195, 116516. https://doi.org/10.1016/j.eswa.2022.116516.
  5. Ajdukiewicz, A. and Kliszczewicz, A. (2002), "Influence of recycled aggregates on mechanical properties of HS/HPC", Cement Concrete Compos., 24(2), 269-279. https://doi.org/10.1016/S0958-9465(01)00012-9.
  6. Arm, M. (2001), "Self-cementing properties of crushed demolished concrete in unbound layers: results from triaxial tests and field tests", Waste Management, 21(3), 235-239. https://doi.org/10.1016/S0956-053X(00)00095-7.
  7. Benemaran, R.S. (2023), "Application of extreme gradient boosting method for evaluating the properties of episodic failure of borehole breakout", Geoenergy Sci. Eng., 226, 211837.
  8. Benemaran, R.S. and Esmaeili-Falak, M. (2020), "Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO", Comput. Concrete, 26(4), 309-316. https://doi.org/10.12989/cac.2020.26.4.309.
  9. Bogas, J.A., De Brito, J. and Ramos, D. (2016), "Freeze-thaw resistance of concrete produced with fine recycled concrete aggregates", J. Cleaner Product., 115, 294-306. https://doi.org/10.1016/j.jclepro.2015.12.065.
  10. Chen, D., Liu, L.B., Yan, Y., Tan, K.F. and Liu, H. (2011), "Effect of different factors on frost resistance of recycled aggregate concrete", Wuhan Ligong Daxue Xuebao(Journal of Wuhan University of Technology), 33(5), 54-58.
  11. Chen, Z.Y., Yahui, M., Ruei-Yuan, W. and Timothy, C. (2023), "GWO-based fuzzy modeling for nonlinear composite systems", Steel Compos. Struct., 47(4), 513-521. https://doi.org/10.12989/scs.2023.47.4.513.
  12. Choi, H., Choi, H., Lim, M., Inoue, M., Kitagaki, R. and Noguchi, T. (2016), "Evaluation on the mechanical performance of low-quality recycled aggregate through interface enhancement between cement matrix and coarse aggregate by surface modification technology", Int. J. Concrete Struct. Mater., 10(1), 87-97. https://doi.org/10.1007/s40069-015-0124-5.
  13. Cui, Z., Ohaga, Y., Kitatsuji, M. and Tanaka, R. (2007), "Experimental research on freezing-thawing cycle of recycled aggregate concrete", J. Build. Mater, 10(5), 534-537.
  14. Deshpande, N., Londhe, S. and Kulkarni, S. (2014), "Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression", Int. J. Sustain. Built Environ., 3(2), 187-198. https://doi.org/10.1016/j.ijsbe.2014.12.002.
  15. Dhir, R.K., Limbachiya, M.C., Leelawat, T. and BS 5328, & BS 882. (1999), "Sutability of recycled concrete aggregate for use in BS 5328 designated mixes", Proceedings of the Institution of Civil Engineers-Structures and buildings, 134(3), 257-274. https://doi.org/10.1680/istbu.1999.31568.
  16. Duan, Z.-H., Kou, S.-C., and Poon, C.S. (2013), "Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete", Construct. Build. Mater., 44, 524-532. https://doi.org/10.1016/j.conbuildmat.2013.02.064.
  17. Esmaeili-Falak, M. and Benemaran, R.S. (2023), "Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles", Geomech. Eng., 32(6), 583-600. https://doi.org/10.12989/gae.2023.32.6.583.
  18. Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Regions Eng., 33(3), 4019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
  19. Faramarzi, A., Heidarinejad, M., Stephens, B. and Mirjalili, S. (2020), "Equilibrium optimizer: A novel optimization algorithm", Knowledge-Based Syst., 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190.
  20. Ge, D.-M., Zhao, L.-C. and Esmaeili-Falak, M. (2022), "Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models", J. Sustain. Cement-Based Mater., 1-19. https://doi.org/10.1080/21650373.2022.2093291.
  21. Gholampour, A., Mansouri, I., Kisi, O. and Ozbakkaloglu, T. (2020), "Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models", Neural Comput. Appl., 32(1), 295-308. https://doi.org/10.1007/s00521-018-3630-y.
  22. Golafshani, E.M. and Behnood, A. (2018), "Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete", J. Cleaner Product., 176, 1163-1176. https://doi.org/10.1016/j.jclepro.2017.11.186.
  23. Han, H., Jahed Armaghani, D., Tarinejad, R., Zhou, J. and Tahir, M.M. (2020), "Random forest and bayesian network techniques for probabilistic prediction of flyrock induced by blasting in quarry sites", Nat. Resources Res., 29(2), 655-667. https://doi.org/10.1007/s11053-019-09611-4.
  24. Hayyolalam, V. and Kazem, A.A.P. (2020), "Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems", Eng. Appl. Artif. Intel., 87, 103249. https://doi.org/10.1016/j.engappai.2019.103249.
  25. Hendriks, C.F. (1994), "Certification system for aggregates produced from building waste and demolished buildings", In Studies in Environmental Science, 60, 821-834. https://doi.org/10.1016/S0166-1116(08)71513-9.
  26. Huda, S.B. and Shahria Alam, M. (2015), "Mechanical and freeze-thaw durability properties of recycled aggregate concrete made with recycled coarse aggregate", J. Mater. Civil Eng., 27(10), 4015003.
  27. Junior, N.S.A., Silva, G.A.O. and Ribeiro, D.V. (2018), "Effects of the incorporation of recycled aggregate in the durability of the concrete submitted to freeze-thaw cycles", Construct. Build. Mater., 161, 723-730. https://doi.org/10.1016/j.conbuildmat.2017.12.076.
  28. Kabirifar, K., Mojtahedi, M., Wang, C. and Tam, V.W.Y. (2020), "Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review", J. Cleaner Product., 263, 121265. https://doi.org/10.1016/j.jclepro.2020.121265.
  29. Kasai, Y. (1993), "Guidelines and the present state of the reuse of demolished concrete in Japan", RILEM Proceedings, 93.
  30. Li, Y., Wang, R., Li, S. and Zhao, Y. (2017), "Assessment of the freeze-thaw resistance of concrete incorporating carbonated coarse recycled concrete aggregates", J. Ceramic Soc. Japan, 125(11), 837-845. https://doi.org/10.2109/jcersj2.17111.
  31. Limbachiya, M.C., Leelawat, T. and Dhir, R.K. (2000), "Use of recycled concrete aggregate in high-strength concrete", Mater. Struct., 33(9), 574-580. https://doi.org/10.1007/BF02480538.
  32. Liu, K., Yan, J., Hu, Q., Sun, Y. and Zou, C. (2016), "Effects of parent concrete and mixing method on the resistance to freezing and thawing of air-entrained recycled aggregate concrete", Construct. Build. Mater., 106, 264-273. https://doi.org/10.1016/j.conbuildmat.2015.12.074.
  33. Liu, K., Zou, C., Zhang, X. and Yan, J. (2021), "Innovative prediction models for the frost durability of recycled aggregate concrete using soft computing methods", J. Build. Eng., 34, 101822. https://doi.org/10.1016/j.jobe.2020.101822.
  34. Lu, W., Webster, C., Peng, Y., Chen, X. and Zhang, X. (2017), "Estimating and calibrating the amount of building-related construction and demolition waste in urban China", Int. J. Construct. Manage., 17(1), 13-24. https://doi.org/10.1080/15623599.2016.1166548.
  35. Maier, P.L. and Durham, S.A. (2012), "Beneficial use of recycled materials in concrete mixtures", Construct. Build. Mater., 29, 428-437. https://doi.org/10.1016/j.conbuildmat.2011.10.024.
  36. Mirjalili, S. (2016), "SCA: A sine cosine algorithm for solving optimization problems", Knowledge-Based Syst., 96, 120-133. https://doi.org/10.1016/j.knosys.2015.12.022.
  37. Naderpour, H., Rafiean, A.H. and Fakharian, P. (2018), "Compressive strength prediction of environmentally friendly concrete using artificial neural networks", J. Build. Eng., 16, 213-219. https://doi.org/10.1016/j.jobe.2018.01.007.
  38. Noureldin, M., Gharagoz, M.M. and Kim, J. (2023), "Seismic retrofit of steel structures with re-centering friction devices using genetic algorithm and artificial neural network", Steel Compos. Struct., 47(2), 167-184. https://doi.org/10.12989/scs.2023.47.2.167.
  39. Oguzhan, D., Can, G. and Duygu Bagci, D., (2023), "Crack detection in folded plates with back-propagated artificial neural network", Steel Compos. Struct., 46(3), 319-334. https://doi.org/10.12989/scs.2023.46.3.319.
  40. Olorunsogo, F.T. and Padayachee, N. (2002), "Performance of recycled aggregate concrete monitored by durability indexes", Cement Concrete Res., 32(2), 179-185. https://doi.org/10.1016/S0008-8846(01)00653-6.
  41. Paul, S.C., Panda, B. and Garg, A. (2018), "A novel approach in modelling of concrete made with recycled aggregates", Measurement, 115, 64-72. https://doi.org/10.1016/j.measurement.2017.10.031.
  42. Poon, C.-S. and Chan, D. (2007), "The use of recycled aggregate in concrete in Hong Kong", Resources, Conservation Recycling, 50(3), 293-305. https://doi.org/10.1016/j.resconrec.2006.06.005.
  43. Qi, C., Chen, Q., Fourie, A. and Zhang, Q. (2018), "An intelligent modelling framework for mechanical properties of cemented paste backfill", Minerals Eng., 123, 16-27. https://doi.org/10.1016/j.mineng.2018.04.010.
  44. Richardson, A., Coventry, K. and Bacon, J. (2011), "Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete", J. Cleaner Product., 19(2-3), 272-277. https://doi.org/10.1016/j.jclepro.2010.09.014.
  45. Sagoe-Crentsil, K.K., Brown, T. and Taylor, A.H. (2001), "Performance of concrete made with commercially produced coarse recycled concrete aggregate", Cement Concrete Res., 31(5), 707-712. https://doi.org/10.1016/S0008-8846(00)00476-2.
  46. Salem, R.M. and Burdette, E.G. (1998), "Role of chemical and mineral admixtures on the physical properties and frost-resistance of recycled aggre-gate concrete", Mater. J., 95(5), 558-563.
  47. Salem, R.M., Burdette, E.G. and Jackson, N.M. (2003), "Resistance to freezing and thawing of recycled aggregate concrete", Mater. J., 100(3), 216-221.
  48. Sarkhani Benemaran, R. and Esmaeili-Falak, M. (2023), "Predicting the Young's modulus of frozen sand using machine learning approaches: state-of-the-art review", Geomech. Eng.,
  49. Sarkhani Benemaran, R., Esmaeili-Falak, M. and Javadi, A. (2022), "Predicting resilient modulus of flexible pavement foundation using extreme gradient boosting based optimised models", Int. J. Pavement Eng., 1-20. https://doi.org/10.1080/10298436.2022.2095385.
  50. Shouhua, L., Jianfeng, L., Hamidreza, A., Mohammad, K., Abbas, K., Arsalan, M. and Banar Fareed, I. (2023), "Reinforced concrete structures with damped seismic buckling-restrained bracing optimization using multi-objective evolutionary niching ChOA", Steel Compos. Struct., 47(2), 147-165. https://doi.org/10.12989/scs.2023.47.2.147.
  51. Tam, V.W.Y., Soomro, M. and Evangelista, A.C.J. (2018), "A review of recycled aggregate in concrete applications (2000-2017)", Construct. Build. Mater., 172, 272-292. https://doi.org/10.1016/j.conbuildmat.2018.03.240.
  52. Topcu, I.B. and Saridemir, M. (2008), "Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 42(1), 74-82. https://doi.org/10.1016/j.commatsci.2007.06.011.
  53. Tu, J., Chen, H., Wang, M. and Gandomi, A.H. (2021), "The colony predation algorithm", J. Bionic Eng., 18(3), 674-710. https://doi.org/10.1007/s42235-021-0050-y.
  54. Van-Thanh, P., Hye-Sook, S., Cheol-Ho, K., Yun, J. and Seung-Eock, K. (2023), "A novel method for vehicle load detection in cable-stayed bridge using graph neural network", Steel Compos. Struct., 46(6), 731-744. https://doi.org/10.12989/scs.2023.46.6.731.
  55. Visintin, P., Xie, T. and Bennett, B. (2020), "A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake", J. Cleaner Product., 248, 119243. https://doi.org/10.1016/j.jclepro.2019.119243.
  56. Xiao, J., Li, W., Fan, Y. and Huang, X. (2012), "An overview of study on recycled aggregate concrete in China (1996-2011) ", Construct. Build. Mater., 31, 364-383. https://doi.org/10.1016/j.conbuildmat.2011.12.074.
  57. Xiao, J., Lu, D. and Ying, J. (2013), "Durability of recycled aggregate concrete: an overview", J. Adv. Concrete Technol., 11(12), 347-359. https://doi.org/10.3151/jact.11.347.
  58. Xiao, J.Z., Xu, X.D. and Fan, Y.H. (2013), "shrinkage and creep of recycled aggregate concrete and their prediction by ANN method", J. Build. Mater., 16(5), 752-757.
  59. Xiao, Q.H., Li, Q., Cao, Z.Y. and Tian, W.Y. (2019), "The deterioration law of recycled concrete under the combined effects of freeze-thaw and sulfate attack", Construct. Build. Mater., 200, 344-355. https://doi.org/10.1016/j.conbuildmat.2018.12.066.
  60. Yang, C., Feng, H. and Esmaeili-Falak, M. (2022), "Predicting the compressive strength of modified recycled aggregate concrete", Struct. Concrete. https://doi.org/10.1002/suco.202100681.
  61. Yang, S. and Lee, H. (2017), "Freeze-thaw resistance and drying shrinkage of recycled aggregate concrete proportioned by the modified equivalent mortar volume method", Int. J. Concrete Struct. Mater., 11(4), 617-626. https://doi.org/10.1007/s40069-017-0216-5.
  62. Yang, S., Wang, J., Deng, B., Azghadi, M.R. and Linares-Barranco, B. (2021), "Neuromorphic context-dependent learning framework with fault-tolerant spike routing", IEEE Transact. Neural Networks Learning Syst., https://doi.org/10.1109/TNNLS.2021.3084250.
  63. Yildirim, S.T., Meyer, C. and Herfellner, S. (2015), "Effects of internal curing on the strength, drying shrinkage and freeze- thaw resistance of concrete containing recycled concrete aggregates", Construct. Build. Mater., 91, 288-296. https://doi.org/10.1016/j.conbuildmat.2015.05.045.
  64. Yuan, J., Zhao, M. and Esmaeili-Falak, M. (2022), "A comparative study on predicting the rapid chloride permeability of self-compacting concrete using meta-heuristic algorithm and artificial intelligence techniques", Struct. Concrete, 23(2), 753-774. https://doi.org/10.1002/suco.202100682.
  65. Zaharieva, R., Buyle-Bodin, F. and Wirquin, E. (2004), "Frost resistance of recycled aggregate concrete", Cement Concrete Res., 34(10), 1927-1932. https://doi.org/10.1016/j.cemconres.2004.02.025.
  66. Zhang, J., Shi, C., Li, Y., Pan, X., Poon, C.-S. and Xie, Z. (2015), "Performance enhancement of recycled concrete aggregates through carbonation", J. Mater. Civil Eng., 27(11), 4015029. https://doi.org/10.1061/(ASCE)MT.1943-5533.000129.
  67. Zhang, S., Carranza, E.J.M., Xiao, K., Wei, H., Yang, F., Chen, Z., Li, N. and Xiang, J. (2022), "Mineral prospectivity mapping based on isolation forest and random forest: Implication for the existence of spatial signature of mineralization in outliers", Nat. Resources Res., 31(4), 1981-1999. https://doi.org/10.1007/s11053-021-09872-y.
  68. Zhu, W., Huang, L., Mao, L. and Esmaeili-Falak, M. (2022), "Predicting the uniaxial compressive strength of oil palm shell lightweight aggregate concrete using artificial intelligence-based algorithms", Struct. Concrete. https://doi.org/10.1002/suco.202100656.