DOI QR코드

DOI QR Code

콘크리트 철도 침목 폐기물을 활용한 CO2 포집제 제조 연구

Research on the Production of CO2 Absorbent Using Railway Tie Concrete Waste

  • 이규빈 (충북대학교 환경공학과) ;
  • 이재영 (한국철도기술연구원 교통환경연구실) ;
  • 장형준 (충북대학교 환경공학과) ;
  • 고상원 (한국철도기술연구원 교통환경연구실) ;
  • 홍혜진 (충북대학교 환경공학과)
  • Gyubin Lee (Department of Environmental Engineering, Chungbuk National University) ;
  • Jae-Young Lee (Korea Railroad Research Institute) ;
  • Hyung-Jun Jang (Department of Environmental Engineering, Chungbuk National University) ;
  • Sangwon Ko (Korea Railroad Research Institute) ;
  • Hye-Jin Hong (Department of Environmental Engineering, Chungbuk National University)
  • 투고 : 2023.09.08
  • 심사 : 2023.09.21
  • 발행 : 2023.09.30

초록

최근 세계적으로 이산화탄소(CO2)의 과도한 배출로 기후변화가 야기되며 CO2를 제거하고 활용하는 기술이 활발히 연구되고 있다. 본 연구에서는 철도의 선로에서 발생하는 콘크리트 철도 침목 폐기물을 CO2 흡수 소재의 활용 가능성을 평가하고 CO2 흡수 반응 전/후의 물리화학적 성질 분석을 통해 CO2 제거 메커니즘을 연구하였다. 콘크리트 철도 침목 폐기물은 대부분 Si(26.60 %)로 이루어져 있고 Ca 함유량이 9.82 %로 포틀랜드 시멘트, 일반 콘크리트 폐기물 시료와 비교하였을 때 가장 적음에도 불구하고 함유량의 98 %가 CO2 포집 반응에 참여하여 CO2 포집 소재로의 우수한 활용 가능성을 입증하였다. TGA와 XRD 분석을 통해 콘크리트 철도 침목 폐기물 기반 CO2 포집 소재가 함유하고 있는 Ca가 CO2 기체와의 반응을 통해 CaCO3로 전환되는 탄산화 반응이 CO2 제거의 주요 메커니즘임을 확인하였다. 또한 SEM 분석 결과 CO2 포집 반응 이후에 0.1 ㎛ 이하 크기의 CaCO3 입자가 다량 형성되었으며, 이는 CO2 포집 소재 내부에 거대기공을 메조기공으로 변환시켜 포집 소재의 비표면적 증가를 야기하였다.

In recent years, excessive emissions of carbon dioxide(CO2) have become the cause of global climate change. Consequently, there has been significant research activity aimed at both removing and utilizing CO2. This study assesses the potential utilization of railway tie concrete waste, generated from railway infrastructure, as a CO2 absorption material and investigates the physicochemical properties before and after CO2 absorption to understand the CO2 removal mechanisms. Railway tie concrete waste primarily consists of Si(26.60 %) and contains 9.82 % of Ca. Compared to samples of Cement and Normal concrete waste, it demonstrated superior potential for use as a CO2 absorption material, with approximately 98 % of the Ca content participating in CO2 absorption reactions. Through Thermogravimetric Analysis(TGA) and X-ray Diffraction(XRD) analysis, it was confirmed that the carbonate reaction, where the Ca in railway tie concrete waste converts into CaCO3 through reaction with CO2 gas, is the primary mechanism for CO2 removal. Furthermore, Scanning Electron Microscopy(SEM) analysis revealed the formation of numerous CaCO3 particles with sizes less than 0.1 ㎛ after the CO2 absorption reaction. This transformation of large internal voids in the CO2 absorption material into mesopores resulted in an increase in the specific surface area of the material.

키워드

과제정보

본 연구는 한국철도기술연구원 기본사업 '철도시설의 폐기물 발생 저감 및 재자원화 기술 개발' 연구과제의 위탁연구비를 지원을 받아 수행되었습니다.

참고문헌

  1. Allen, M., Dube, O.P., Solecki, W., Arag n-Durand, F., Cramer, W., Humphreys, S., Kainuma, M. (2018). Special Report: Global Warming of 1.5 C, Intergovernmental Panel on Climate Change (IPCC).
  2. Cui, Z., Du, Q., Gao, J., Bie, R. (2023). Waste heat recovery and cascade utilization of CO2 chemical absorption system based on organic amine method in heating season, Applied Thermal Engineering, 230(B), 120834.
  3. Li, N., Mo, L., Unluer, C. (2022). Emerging CO2 utilization technologies for construction materials: a review. Journal of CO2 Utilization, 65, 102237.
  4. Li, Y., Zhang, S., Wang, R., Zhao, Y., Men, C. (2019). Effects of carbonation treatment on the crushing characteristics of recycled coarse aggregates, Construction and Building Materials, 201, 408-420. https://doi.org/10.1016/j.conbuildmat.2018.12.158
  5. Mo, L., Hao, Y., Liu, Y., Wang, F., Deng, M. (2019). Preparation of calcium carbonate binders via CO2 activation of magnesium slag, Cement and Concrete Research, 121, 81-90. https://doi.org/10.1016/j.cemconres.2019.04.005
  6. Ngo, I., Ma, L., Zhai, J., Wang, Y. (2023). Enhancing fly ash utilization in backfill materials treated with CO2 carbonation under ambient conditions, International Journal of Mining Science and Technology, 33(3), 323-337. https://doi.org/10.1016/j.ijmst.2023.02.001
  7. Olajire, A.A. (2013). A review of mineral carbonation technology in sequestration of CO2, Journal of Petroleum Science and Engineering, 109, 364-392. https://doi.org/10.1016/j.petrol.2013.03.013
  8. Saadatkhah, N., Carillo Garcia, A., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., Patience, G.S., Chaouki, J. (2020). Experimental methods in chemical engineering: thermogravimetric analysis-TGA, The Canadian Journal of Chemical Engineering, 98(1), 34-43. https://doi.org/10.1002/cjce.23673
  9. Siriwardena, D.P., Peethamparan, S. (2015). Quantification of CO2 sequestration capacity and carbonation rate of alkaline industrial byproducts, Construction and Building Materials, 91, 216-224. https://doi.org/10.1016/j.conbuildmat.2015.05.035
  10. Xian, X., Zhang, D., Lin, H., Shao, Y. (2022). Ambient pressure carbonation curing of reinforced concrete for CO2 utilization and corrosion resistance, Journal of CO2 Utilization, 56, 101861.
  11. Xing, W., Tam, V.W., Le, K.N., Butera, A., Hao, J.L., Wang, J. (2022). Effects of mix design and functional unit on life cycle assessment of recycled aggregate concrete: Evidence from CO2 concrete, Construction and Building Materials, 348, 128712.
  12. Zhang, Z., Vo, D.N., Kum, J., Hong, S.H., Lee, C.H. (2023). Enhancing energy efficiency of chemical absorption-based CO2 capture process with advanced waste-heat recovery modules at a high capture rate, Chemical Engineering Journal, 472, 144918.