DOI QR코드

DOI QR Code

강섬유보강콘크리트의 압축거동 특성을 반영한 기둥의 내폭해석

Numerical Study on Columns Subjected to Blast Load Considering Compressive Behavior of Steel Fiber Reinforced Concrete

  • 김재민 (서울시립대학교 건축공학과 스마트시티융합전공 ) ;
  • 이상훈 (서울시립대학교 건축공학과 스마트시티융합전공) ;
  • 김재현 (서울시립대학교 건축학부 ) ;
  • 김강수 (서울시립대학교 건축공학과 스마트시티융합전공 )
  • 투고 : 2023.09.18
  • 심사 : 2023.10.06
  • 발행 : 2023.10.31

초록

강섬유보강콘크리트는 일반 콘크리트에 비해 높은 강도 및 우수한 에너지 소산 능력을 보이며, 폭발하중 작용 시 균열 전파 및 파편 발생을 감소시킬 수 있다. 본 연구에서는 유한요소해석 프로그램인 LS-DYNA에 SFRC 재료물성을 구현하고자 콘크리트 비선형 재료모델인 K&C 모델의 파괴 곡면(Failure surface) 및 손상 함수(Damage function)를 정의하는 파라미터를 제안하였다. 제안 파라미터 검증을 위하여 단일요소해석을 수행하였으며, 제안 파라미터가 적용된 재료모델은 SFRC 재료시험 거동을 상당히 유사하게 모사하는 것으로 나타났다. 또한, 강섬유 혼입률에 따른 SFRC 기둥의 성능을 평가하기 위하여 내폭해석을 수행하였으며, KOSHA 규정을 참조하여 섬유 혼입률에 따른 SFRC 기둥의 내폭성능을 정량적으로 분석하였다.

Steel fiber reinforced concrete (SFRC) exhibits enhanced strength and superior energy dissipation capacity compared to normal concrete, and it can also reduce crack propagation and fragmentation of concrete even when subjected to blast loads. In this study, the parameters defining failure surface and damage function of the K&C concrete nonlinear model were proposed to be applied for the properties of SFRC in LS-DYNA. Single element analysis has been conducted to validate the proposed parameters in the K&C model, which provided very close simulations on the compressive behavior of SFRC. In addition, blast analysis was performed on SFRC columns with different volume fractions of steel fibers, and the blast resistance of SFRC columns was quantitatively analyzed with Korea Occupational Safety & Health Agency (KOSHA) guidelines.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호RS-2021-KA163162).

참고문헌

  1. Lee, M. J., and Kwak, H. G. (2021), Numerical simulations of blast response for SFRC slabs using an orthotropic model, Engineering Structures, 238, 112150. 
  2. Yin, H., and Ouyang, Y. (2022), Experimental and Numerical Study on Steel Fiber Concrete under Blast Loading, Buildings, 12(2), 2119. 
  3. Lee, J. Y., Shin, H. O., Min, K. H., and Yoon, Y. S. (2013), Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 17(3), 1-9 (in Korean, with English abstract).  https://doi.org/10.11112/JKSMI.2013.17.3.001
  4. Livermore Software Technology (LST). (2021), LS-DYNA Keyword User's Manual, Volumn 2. 
  5. Lee, K. H., Kim, J. M., Kim, J. H., Lee, S. H., and Kang, S. K. (2022), Evaluation on Blast Resistance Performance of Reinforced Concrete Wall Strengthened by FRP Sheet, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 26(5), 151-160 (in Korean, with English abstract).  https://doi.org/10.11112/JKSMI.2022.26.5.151
  6. Lin, X. (2018), Numerical simulation of blast responses of ultra-high performance fibre reinforced concrete panels with strain-rate effect, Construction and Building Materials, 176, 371-382.  https://doi.org/10.1016/j.conbuildmat.2018.05.066
  7. Lee, M. J., Kwak, H. G., and Part, G. K. (2021), An improved calibration method of the K&C model for modeling steel-fiber reinforced concrete, Composite Structures, 269, 114010. 
  8. Lee, S. C., Oh, J. H., and Cho, J. Y. (2015), Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers, Materials, 8(4), 1442-1458.  https://doi.org/10.3390/ma8041442
  9. Gholampour, A., and Ozbakkaloglu, T. (2018), Fiber-reinforced concrete containing ultra high-strength micro steel fibers under active confinement, Construction and Building Materials, 187, 299-306.  https://doi.org/10.1016/j.conbuildmat.2018.07.042
  10. Abbass, W., Khan, M. I., and Mourad, S. (2018), Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete, Construction and Building Materials, 168, 556-569  https://doi.org/10.1016/j.conbuildmat.2018.02.164
  11. Ou, Y. C., Tsai, M. S., Liu, K. Y., and Chang, K. C. (2012), Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index, Journal of Materials in Civil Engineering, 24(2), 207-215  https://doi.org/10.1061/(ASCE)MT.1943-5533.0000372
  12. Shafieifar, M., Farzad, M., and Azizinamini, A. (2017), Experimental and numerical study on mechanical properties of Ultra High Performance Concrete (UHPC), Construction and Building Materials, 156, 402-411.  https://doi.org/10.1016/j.conbuildmat.2017.08.170
  13. Chern, J. C., Yang, H. J., and Chen, H. W. (1992), Behavior of Steel Fiber Reinforced Concrete in Multiaxial Loading, ACI Materials Journal, 89(1), 32-40.  https://doi.org/10.14359/1242
  14. Babanajad, S. K., Farnam, Y., and Sheckrchi, M. (2012), Failure criteria and triaxial behaviour of HPFRC containing high reactivity metakaolin and silica fume, Construction and Building Materials, 29, 215-229  https://doi.org/10.1016/j.conbuildmat.2011.08.094
  15. Yoo, D. Y., Yoon, Y. S., and Banthina, N. (2015), Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate, Cement and Concrete Composites, 64, 84-92.  https://doi.org/10.1016/j.cemconcomp.2015.10.001
  16. Dwarakanath, H. V., and Nagaraj, T. S. (1991), Comparative Study of Predictions of Flexural Strength of Steel Fiber Concrete, ACI Structural Journal, 88(6), 714-720.  https://doi.org/10.14359/1262
  17. Lu, X., and Hsu, C. T. T. (2006), Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression, Cement and Concrete Research, 36, 1679-1685.  https://doi.org/10.1016/j.cemconres.2006.05.021
  18. Ren G. M., Wu, H., Liu, Q. F., and Gong, Z. M. (2016), Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses, Construction and Building Materials, 113, 1-14.  https://doi.org/10.1016/j.conbuildmat.2016.02.227
  19. Meng, K., Xu, L., and Chi, Y. (2021), Experimental investigation on the mechanical behavior of hybrid steel-polypropylene fiber reinforced concrete under conventional triaxial cyclic compression, Construction and Building Materials, 291, 123262. 
  20. Chi, Y., Xu, L., Mei, G., Hu, N., and Su, J. (2014), A unified failure envelope for hybrid fibre reinforced concrete subjected to true triaxial compression, Composite Structures, 109, 31-40.  https://doi.org/10.1016/j.compstruct.2013.10.054
  21. Xu, J., and Lu, Y. (2016), Analytical and Finite Element Concrete Material Models: Comparison of Blast Response Analysis of One Way Slabs, American Concrete Institute(ACI), 3.1-3.22. 
  22. Aoude, H., Cook, W. D., and Mitchell, D. (2009), Behavior of Columns Constructed with Fibers and Self-Consolidating Concrete, ACI Structural Journal, 106(3), 349-357.  https://doi.org/10.14359/56499
  23. Nataraja, M. C., Dhang, N., and Gupta, A. P. (1999), Stress-strain curves for steel-fiber reinforced concrete under compression, Cement & Concrete Composites, 21(5-6), 383-390.  https://doi.org/10.1016/S0958-9465(99)00021-9
  24. Jang, S. J., and Yun, H. D. (2018) Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete, Composite Structures, 185, 203-211.  https://doi.org/10.1016/j.compstruct.2017.11.009
  25. Bencardino, F., Rizzuti, L., Spadea, G., and Swamy, N. (2008), Stress-Strain Behavior of Steel Fiber-Reinforced Concrete in Compression, Journal of Materials in Civil Engineering, 20(3), 255-263.  https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255)
  26. Jo, B. W., Shon, Y. H., and Kim, Y. J. (2001) The Evalution of Elastic Modulus for Steel Fiber Reinforced Concrete, Russian Journal of Nondestructive Testing, 37(2), 152-161.  https://doi.org/10.1023/A:1016780124443
  27. Mansur, M. A., Chin, M. S., and Wee, T. H. (1999), Stress-Strain Relationship of High-Strength Fiber Concrete in Compression, Journal of Materials in Civil Engineering, 11(1), 21-29.  https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(21)
  28. Mardalizad, A., Caruso, M., Manes, A., and Giglio, M. (2019), Investigation of mechanical behavior of a quasi-brittle material using Karagozian and Case Concrete (KCC) model, Journal of Rock Mechanics and Geotechnical Engineering, 11(6), 1119-1137.  https://doi.org/10.1016/j.jrmge.2019.01.005
  29. Yang, S., Kong, X., Wu, H., Fang, Q., and Xiang, H. (2021), Constitutive modeling of UHPCC material under impact and blast loadings, International Journal of Impact Engineering, 153, 103860. 
  30. Xu, S., Wu, P., and Wu, C. (2020), Calibration of KCC concrete model for UHPC against low-velocity impact, International Journal of Impact Engineering, 144, 103648. 
  31. Su, Q., Wu, H., and Fang, Q. (2022), Calibration of KCC model for UHPC under impact and blast loadings, Cement and Concrete Composites, 127, 104401. 
  32. Dilger, W. H., Koch, R., and Kowalczyk, R. (1984), Ductility of Plain Confined Concrete Under Different Strain Rates, ACI Journal, 81(1), 73-81.  https://doi.org/10.14359/10649
  33. Low, T. S., and Zhao, P. J. (2004), Impact Response of Steel Fiber-Reinforced Concrete Using a Split Hopkinson Presuure Bar, Journal of Materials in Civil Engineering, 16(1), 54-59.  https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(54)
  34. Zhang, L., and Mindess, S. (2011), Dynamic Compressive Toughness of High Strength Fiber Reinforced Concrete, ACI Symposium Publication, 281, 1-21. 
  35. Thomas, R. J., and Sorenson, A. D. (2017), Review of strain rate effects for UHPC in tension, Construction and Building Materials, 153, 846-856.  https://doi.org/10.1016/j.conbuildmat.2017.07.168
  36. Malvar, L. J. (1998), Review of Static and Dynamic Properties of Steel Reinforcing Bars, ACI Materials Journal, 95(6), 609-616.  https://doi.org/10.14359/403
  37. Burrell, R. P., Aoude, H., and Saatcioglu, M. (2015), Response of SFRC Columns under Blast Loads, Journal of Structural Engineering, 141(9), 04014209. 
  38. Korean Occupational Safety Health Agency. (2012). KOSHA GUIDE D-65-2018, KOSHA (in Korean).