DOI QR코드

DOI QR Code

섬유가 혼입된 혼합시멘트 콘크리트의 초고온에서의 폭렬특성 및 내화성능 평가

Evaluation of Spalling Characteristics and Fire Resistance Fiber-Entrained Mixed Cement Concrete at Ultra-High Temperatures

  • 오준환 (가천대학교 토목환경공학과) ;
  • 천주현 (한국건설생활환경시험연구원.건설기술연구센터) ;
  • 이만수 (서일대학교 건설시스템공학과) ;
  • 유성원 (가천대학교 토목환경공학과)
  • 투고 : 2023.09.07
  • 심사 : 2023.09.20
  • 발행 : 2023.10.31

초록

본 연구는 섬유가 혼입된 혼합시멘트 콘크리트의 초고온에서의 폭렬특성 및 내화성능을 평가하는 것이 목표이다. 이를 위해 FA계, Slag계 및 섬유 혼입량에 따른 각각의 배합을 상온, 150℃, 300℃, 600℃, 900℃의 온도로 가열한 후, 폭렬 형상, 압축강도 및 탄성계수를 측정 및 평가하였다. 실험 결과, Slag계 시편보다 FA계 시편이 초고온 가열에서 표면손상이 상대적으로 많이 발생한 것으로 나타났으며, 초고온 가열 즉 900℃에서 섬유를 혼입하지 않은 배합과 혼입한 배합의 차이가 발생하였는데, 그 결과 섬유를 혼입하지 않은 배합에서 약 5% 이상의 강도저하가 발생하였다. 또한 탄성계수 역시 압축강도와 동일한 현상이 나타났으며, 특히 압축강도가 감소하는 양에 비해 탄성계수의 감소 폭이 더 큰 것으로 나타났다. 한편 가열온도에 따른 압축강도와 탄성계수의 추정식을 통계적으로 제안하였다.

The goal of this study is to evaluate the bursting characteristics and fire resistance performance of mixed cement concrete containing fibers at very high temperatures. For this purpose, FA-based, Slag-based, and each mix according to the amount of fiber mixed were heated to room temperature, 150℃, 300℃, 600℃, and 900℃, and then the burst shape, compressive strength, and elastic modulus were measured and evaluated. As a result of the experiment, it was found that relatively more surface damage occurred in FA-based specimens when heated at ultra-high temperatures than in slag-based specimens, and there was a difference between the mix without fibers and the mix with fibers when heated at ultra-high temperatures, that is, at 900℃. In the mix without fibers, a decrease in strength of more than 5% occurred. In addition, the elastic modulus also showed the same phenomenon as the compressive strength, and in particular, the decrease in elastic modulus was found to be greater than the amount of decrease in compressive strength. Meanwhile, estimation equations for compressive strength and elastic modulus according to heating temperature were statistically proposed.

키워드

과제정보

본 연구는 국토교통부 TBM 굴진향상을 위한 연속굴착 기술개발 사업(과제번호: RS-2022-00144188)의 연구비 지원으로 수행되었으며, 이에 감사드립니다.

참고문헌

  1. Abd Razak, S. N., Shafiq, N., Nikbakht, E. H., Mohammed, B. S., Guillaumat, L., and Farhan, S. A. (2022), Fire performance of fly-ash-based geopolymer concrete: Effect of burning temperature on mechanical and microstructural properties, Materials Today: Proceedings, 66, 2665-2669. https://doi.org/10.1016/j.matpr.2022.06.491
  2. Amran, M., Huang, S. S., Debbarma, S., and Rashid, R. S. (2022), Fire resistance of geopolymer concrete: A critical review, Construction and Building Materials, 324, 126722.
  3. ASTM international (2014), Standard Test Methods for Fire Tests of Building Construction and Materials. ASTM E119-14.
  4. Choi, J.-I., Cho, K. H., Yu, H. S., Kim, H. J., and Lee, B. Y. (2020), Fire Resistance of Ultra-High Performance Concrete According to the Amount of Polypropylene Fiber, Journal of the Korean Recycled Construction Resources Institute, 8(2), 212-218. (in Korean)
  5. Consolazio, G. R., McVay, M. C., and RISH III, J. W., (1998), Measurement and prediction of pore pressures in saturated cement mortat subjected to radiant heating, ACI Materials Journal, 95(5), 525-536. https://doi.org/10.14359/395
  6. Kim, M. S., Sim, S. R., and Ryu, D. W. (2020), A Study on the Spalling Properties of Polymer Modified Cement Mortar Using Polypropylene Fiber, Journal of the Korea Institute of Building Construction, 20(4), 305-311. (in Korean)
  7. Kim, H. G., Park, K. W., Yoon, M. O., and Lee, C. W. (2005), A study on the deterministic temperature-time curves and required resistance times by fire model for assessment of fire resistance of tunnel structures, Journal of Korean Tunnelling and Underground Space Association, 7(2) 165-176. (in Korean)
  8. Kim, S. K., and Kim, W. S. (2015), Performance Evaluation of High Strength Concrete with Composite Fibers in Accordance with High Temperature, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(6), 63-71. (in Korean) https://doi.org/10.11112/jksmi.2015.19.6.063
  9. Kwon, K. S., and Ryu, D. W. (2015), Fire Resistance Performance Test of High Strength Concrete by Type of Mineral Admixture, Journal of the Korea Institute of Building Construction, 15(6), 597-605. (in Korean) https://doi.org/10.5345/JKIBC.2015.15.6.597
  10. Lee, J. H. (2013), Evaluation on Fire Resistance of Ultra-High-Strength Concrete Depending on Aggregates and Fibers Type, Journal of the Korean Society of Hazard Mitigation, 13(6), 091-097. (in Korean) https://doi.org/10.9798/KOSHAM.2013.13.6.091
  11. Long, W. J., Xie, J., Zhang, X., Fang, Y., and Khayat, K. H. (2021), Hydration and microstructure of calcined hydrotalcite activated high-volume fly ash cementitious composite, Cement and Concrete Composites, 123, 104213.
  12. National Fire Protection Association. (2006), Standard Methods of Tests of Fire Resistance of Building Construction and Materials. from ASTM E119-14. 2006:4-299.
  13. Serrano, R., Cobo, A., Prieto, M. I., and de las Nieves Gonzalez, M. (2016), Analysis of fire resistance of concrete with polypropylene or steel fibers, Construction and Building Materials, 122, 302-309. https://doi.org/10.1016/j.conbuildmat.2016.06.055
  14. Song, C., Zhang, G., Lu, Z., Li, X., and Zhao, X. (2023), Fire resistance tests on polypropylene-fiber-reinforced prestressed concrete box bridge girders, Engineering Structures, 282, 115800.
  15. Razak, S. N. A., Guillaumat, L., and Shafiq, N. (2021), Effect of fire flame exposure on basalt and carbon fiber-reinforced concrete. In ICCOEE2020: Proceedings of the 6th International Conference on Civil, Offshore and Environmental Engineering (ICCOEE2020) 573-579.
  16. Yang, H. H., Kim, W. J., Park, D. C., Lee, S. H., and Kim, D. H., (2010), An Evaluation of Fire Resistance and Mock-up Test of the Alumino-Silicate Ceramic Panel, Korea Concrete Institute, Korea, 22(2), 181-182. (in Korean)