DOI QR코드

DOI QR Code

Mechanical, rheological, and durability analysis of self-consolidating concretes containing recycled aggregates

  • Hiwa Mollaei (Department of Civil Engineering, Tabriz Branch, Islamic Azad University) ;
  • Taleb Moradi Shaghaghi (Department of Civil Engineering, Tabriz Branch, Islamic Azad University) ;
  • Hasan Afshin (Department of Civil Engineering, Sahand University of Technology) ;
  • Reza Saleh Ahari (Department of Civil Engineering, Tabriz Branch, Islamic Azad University) ;
  • Seyed Saeed Mirrezaei (Department of Civil Engineering, Tabriz Branch, Islamic Azad University)
  • 투고 : 2023.06.05
  • 심사 : 2023.09.12
  • 발행 : 2023.10.25

초록

In the present paper, the effect of recycled aggregates on the rheological and mechanical properties of self-consolidating concrete is investigated experimentally and numerically. Hence, the specimen with two types of recycled aggregates, i.e., known and unknown resistance origins, are utilized for the studied specimens. The experiments in this study are designed using the Box-Behnken method, which is one of the response surface methods. Input variables in mixtures include silica fume in the range of 5-15% as a percentage substitute for cement weight and recycled coarse and fine aggregates in the range of 0-50% for both series of recycled materials as a substitute for natural materials. The studied responses are slump flow, V funnel, compressive strength, tensile strength, and durability. The results indicate that the increase in the amount of recycled aggregates reduces the rheological and mechanical properties of the mixtures, while silica fume effectively improves the mechanical properties. In addition, the results demonstrate that the fine recycled aggregates affect the total response of the concrete significantly. The results of tensile and compressive strengths indicate that the mixtures including 50% recycled materials with known resistance origin demonstrate better responses up to 8 and 10% compared to the materials with unknown resistance origins, respectively. Recycled materials with a specific resistance origin also show better results than recycled materials with an unknown resistance origin. Durability test results represent those concretes containing recycled coarse aggregates have lower strength compared to recycled fine aggregates. Also, a series of mathematical relationships for all the responses are presented using variance analysis to predict mixtures' rheological and mechanical properties.

키워드

참고문헌

  1. Ahari, R.S., Erdem, T.K. and Ramyar, K. (2015), "Effect of various supplementary cementitious materials on rheological properties of self-consolidating concrete", Constr. Build. Mater., 75, 89-98. https://doi.org/10.1016/j.conbuildmat.2014.11.014.
  2. Aldahdooh, M.A.A., Jamrah, A., Alnuaimi, A., Martini, M.I., Ahmed, M.S.R. and Ahmed, A.S.R. (2018), "Influence of various plastics-waste aggregates on properties of normal concrete", J. Build. Eng., 17, 13-22. https://doi.org/10.1016/j.jobe.2018.01.014.
  3. Al-Luhybi, A.S., Aziz, I.A. and Mohammad, K.I. (2023), "Experimental assessment of mechanical and physical performance of latex modified concrete with fine recycled aggregate", Struct., 48, 1932-1938. https://doi.org/10.1016/j.istruc.2023.01.069.
  4. ASTM C1262/C1262 (2016), Standard Test Method for Evaluating the Freeze-Thaw Durability of Dry-Cast Segmental Retaining Wall Units and Related Concrete Units.
  5. ASTM C672/C672M (2012), Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals. 
  6. ASTM International Committee C09 on Aggregates (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens1, ASTM International.
  7. ASTM International Committee C09 on Concrete and Concrete Aggregates (2008), Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, ASTM international.
  8. Aziminezhad, M., Mahdikhani, M. and Memarpour, M.M. (2018), "RSM-based modeling and optimization of self-consolidating mortar to predict acceptable ranges of rheological properties", Constr. Build. Mater., 189, 1200-1213. https://doi.org/10.1016/j.conbuildmat.2018.09.019.
  9. Bahrami, N., Zohrabi, M., Mahmoudy, S.A. and Akbari, M. (2020), "Optimum recycled concrete aggregate and micro-silica content in self-compacting concrete: Rheological, mechanical and microstructural properties", J. Build. Eng., 31, 101361. https://doi.org/10.1016/j.jobe.2020.101361.
  10. Basser, H., Shaghaghi, T.M., Afshin, H., Ahari, R.S. and Mirrezaei, S.S. (2022), "An experimental investigation and response surface methodology-based modeling for predicting and optimizing the rheological and mechanical properties of self-compacting concrete containing steel fiber and PET", Constr. Build. Mater., 315, 125370. https://doi.org/10.1016/j.conbuildmat.2021.125370.
  11. Bravo, M., De Brito, J., Pontes, J. and Evangelista, L. (2015), "Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants", J. Clean. Prod., 99, 59-74. https://doi.org/10.1016/j.jclepro.2015.03.012.
  12. Bui, N.K., Satomi, T. and Takahashi, H. (2017), "Improvement of mechanical properties of recycled aggregate concrete basing on a new combination method between recycled aggregate and natural aggregate", Constr. Build. Mater., 148, 376-385. https://doi.org/10.1016/j.conbuildmat.2017.05.084.
  13. Cai, L., Wang, H. and Fu, Y. (2013), "Freeze-thaw resistance of alkali-slag concrete based on response surface methodology", Constr. Build. Mater., 49, 70-76. https://doi.org/10.1016/j.conbuildmat.2013.07.045.
  14. Concrete, S.C. (2005), "The european guidelines for self-compacting concrete", BIBM, et al, 22, 563.
  15. Dimitriou, G., Savva, P. and Petrou, M.F. (2018), "Enhancing mechanical and durability properties of recycled aggregate concrete", Constr. Build. Mater., 158, 228-235. https://doi.org/10.1016/j.conbuildmat.2017.09.137.
  16. Djelloul, O.K., Menadi, B., Wardeh, G. and Kenai, S. (2018), "Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag", Adv. Concrete Constr., 6(2), 103. https://doi.org/10.12989/acc.2018.6.2.103.
  17. EN, B. (2003), 1340, Concrete Kerb Units-Requirements and Test Methods, British Standards Institution, London.
  18. EN, B.S. (2009), Testing Hardened Concrete-Part 3: Compressive Strength of Test Specimens, British Standard Institution, London, UK.
  19. Gao, D., Ji, D., Gu, Z., Yan, H. and Zhang, Y. (2023), "Workability and mechanical properties analysis of hybrid fibers reinforced self-compacting concrete incorporating recycled aggregates based on acoustic emission technique", Struct., 51, 1722-1741. https://doi.org/10.1016/j.istruc.2023.03.139.
  20. Gholhaki, M., Hajforoush, M. and Kazemi, M. (2018), "An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials", Constr. Build. Mater., 158, 173-180. https://doi.org/10.1016/j.conbuildmat.2017.09.135.
  21. Guneyisi, E., Gesoglu, M., Algin, Z. and Yazici, H. (2016), "Rheological and fresh properties of self-compacting concretes containing coarse and fine recycled concrete aggregates", Constr. Build. Mater., 113, 622-630. https://doi.org/10.1016/j.conbuildmat.2016.03.073.
  22. Haitao, Y. and Shizhu, T. (2015), "Preparation and properties of high-strength recycled concrete in cold areas", Materiales de Construccion, 65(318), e050-e050. https://doi.org/10.3989/mc.2015.03214.
  23. Huang, J., Zou, C., Sun, D., Yang, B. and Yan, J. (2021), "Effect of recycled fine aggregates on alkali-activated slag concrete properties", Struct., 30, 89-99. https://doi.org/10.1016/j.istruc.2020.12.064.
  24. Kapoor, K., Singh, S.P., Singh, B. and Singh, P. (2020), "Effect of recycled aggregates on fresh and hardened properties of self-compacting concrete", Mater. Today: Proc., 32, 600-607. https://doi.org/10.1016/j.matpr.2020.02.753.
  25. Katz, A. (2003), "Properties of concrete made with recycled aggregate from partially hydrated old concrete", Cement Concrete Res., 33(5), 703-711. https://doi.org/10.1016/S0008-8846(02)01033-5.
  26. Kim, Y., Sim, J. and Park, C. (2012), "Mechanical properties of recycled aggregate concrete with deformed steel re-bar", J. Marine Sci. Technol., 20(3), 5.
  27. Kou, S.C., Poon, C.S. and Chan, D. (2004), "Properties of steam cured recycled aggregate fly ash concrete", Eds. Vazquez, E., Hendriks, C. & Janssen, G.M.T., Int. RILEM Conf. Use Recycl. Mater. Build. Struct., Barcelona, Spain.
  28. Leite, M.B., Figueire do Filho, J.G.L. and Lima, P.R. (2013), "Workability study of concretes made with recycled mortar aggregate", Mater. Struct., 46, 1765-1778. https://doi.org/10.1617/s11527-012-0010-4.
  29. Manzi, S., Mazzotti, C. and Bignozzi, M.C. (2013), "Short and long-term behavior of structural concrete with recycled concrete aggregate", Cement Concrete Compos., 37, 312-318. https://doi.org/10.1016/j.cemconcomp.2013.01.003.
  30. Mo, K.H., Ling, T.C. and Cheng, Q. (2021), "Examining the influence of recycled concrete aggregate on the hardened properties of self-compacting concrete", Waste Biomass Valoriz., 12, 1133-1141. https://doi.org/10.1007/s12649-020-01045-x.
  31. Montgomery, D.C. (2017), Design and Analysis of Experiments, John Wiley & Sons.
  32. Moodi, F., Norouzi, S. and Dashti, P. (2021), "Mechanical properties and durability of alkali-activated slag repair mortars containing silica fume against freeze-thaw cycles and salt scaling attack", Adv. Concrete Constr., 11, 493-505. https://doi.org/10.12989/acc.2021.11.6.493.
  33. Neville, A. (1995), Properties of Concrete, 4th Edition, London, UK.
  34. Ngo, T.T., Bouvet, A., Debieb, F. and Aggoun, S. (2017), "Effect of cement and admixture on the utilization of recycled aggregates in concrete", Constr. Build. Mater., 149, 91-102. https://doi.org/10.1016/j.conbuildmat.2017.04.152.
  35. Omrane, M., Kenai, S., Kadri, E. and Ait-Mokhtar, A. (2017), "Performance and durability of self-compacting concrete using recycled concrete aggregates and natural pozzolan", J. Clean. Prod., 165, 415-430. https://doi.org/10.1016/j.jclepro.2017.07.139.
  36. Poon, C.S., Kou, S.C., Wan, H.W. and Etxeberria, M. (2009), "Properties of concrete blocks prepared with low grade recycled aggregates", Waste Manage., 29(8), 2369-2377. https://doi.org/10.1016/j.wasman.2009.02.018.
  37. Rodrigues, F., Carvalho, M.T., Evangelista, L. and De Brito, J. (2013), "Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants", J. Clean. Prod., 52, 438-445. https://doi.org/10.1016/j.jclepro.2013.02.023.
  38. Safiuddin, M.D., Salam, M.A. and Jumaat, M.Z. (2011), "Effects of recycled concrete aggregate on the fresh properties of self-consolidating concrete", Arch. Civil Mech. Eng., 11(4), 1023-1041. https://doi.org/10.1016/S1644-9665(12)60093-4.
  39. Shaikh, F., Kerai, S. and Kerai, S. (2015), "Effect of micro-silica on mechanical and durability properties of high volume fly ash recycled aggregate concretes (HVFA-RAC)", Adv. Concrete Constr., 3(4), 317. https://doi.org/10.12989/acc.2015.3.4.317.
  40. Silva, R.V., De Brito, J. and Dhir, R.K. (2018), "Fresh-state performance of recycled aggregate concrete: A review", Constr. Build. Mater., 178, 19-31. https://doi.org/10.1016/j.conbuildmat.2018.05.149.
  41. Soares, R.D.C., Mohamed, A., Venturini, W.S. and Lemaire, M. (2002), "Reliability analysis of non-linear reinforced concrete frames using the response surface method", Reliab. Eng. Syst. Saf., 75(1), 1-16. https://doi.org/10.1016/S0951-8320(01)00043-6.
  42. Wang, Y., Zhang, H., Geng, Y., Wang, Q. and Zhang, S. (2019), "Prediction of the elastic modulus and the splitting tensile strength of concrete incorporating both fine and coarse recycled aggregate", Constr. Build. Mater., 215, 332-346. https://doi.org/10.1016/j.conbuildmat.2019.04.212.
  43. Wu, J., Jing, X. and Wang, Z. (2017), "Uni-axial compressive stress-strain relation of recycled coarse aggregate concrete after freezing and thawing cycles", Constr. Build. Mater., 134, 210-219. https://doi.org/10.1016/j.conbuildmat.2016.12.142.
  44. Zaharieva, R., Buyle-Bodin, F., Skoczylas, F. and Wirquin, E. (2003), "Assessment of the surface permeation properties of recycled aggregate concrete", Cement Concrete Compos., 25(2), 223-232. https://doi.org/10.1016/S0958-9465(02)00010-0.
  45. Zega, C.J. and Di Maio, A.A. (2011), "Use of recycled fine aggregate in concretes with durable requirements", Waste Manage., 31(11), 2336-2340. https://doi.org/10.1016/j.wasman.2011.06.011.
  46. Zhu, P., Hao, Y., Liu, H., Wei, D., Liu, S. and Gu, L. (2019), "Durability evaluation of three generations of 100% repeatedly recycled coarse aggregate concrete", Constr. Build. Mater., 210, 442-450. https://doi.org/10.1016/j.conbuildmat.2019.03.203.