DOI QR코드

DOI QR Code

Analysis of whole genome sequencing and virulence factors of Vibrio vulnificus 1908-10 isolated from sea water at Gadeok island coast

  • Hee-kyung Oh (Marine Products Sanitary Control Center, Dong-Eui University) ;
  • Nameun Kim (Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University) ;
  • Do-Hyung Kim (Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University) ;
  • Hye-Young Shin (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • Eun-Woo Lee (Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University) ;
  • Sung-Hwan Eom (Department of Food Science and Technology, Dong-Eui University) ;
  • Young-Mog Kim (Department of Food Science and Technology, Pukyong National University)
  • Received : 2023.05.09
  • Accepted : 2023.07.08
  • Published : 2023.09.30

Abstract

Vibrio vulnificus is an aquatic bacterium causing septicemia and wound infection in humans. To understand this pathogen at the genomic level, it was performed whole genome sequencing of a cefoxitin-resistant strain, V. vulnificus 1908-10 possessing virulence-related genes (vvhA, viuB, and vcgC) isolated from Gadeok island coastal seawater in South Korea. The genome of V. vulnificus 1908-10 consisted of two circular contigs and no plasmid. The total genome size was estimated to be 5,018,425 bp with a guanine-cytosine (GC) content of 46.9%. We found 119 tRNA and 34 rRNA genes respectively in the genome, along with 4,352 predicted protein sequences. Virulence factor (VF) analysis further revealed that V. vulnificus 1908-10 possess various virulence genes in classes of adherence, antiphagocytosis, chemotaxis and motility, iron uptake, quorum sensing, secretion system, and toxin. In the comparison of the presence/absence of virulence genes, V. vulnificus 1908-10 had fur, hlyU, luxS, ompU, pilA, pilF, rtxA, rtxC, and vvhA. Of the 30 V. vulnificus comparative strains, 80% of the C-genotype strains have all of these genes, whereas 40% of the E-genotype strains have all of them. In particular, pilA were identified in 80% of the C-type strains and 40% of the E-type strains, showing more difference than other genes. Therefore, V. vulnificus 1908-10 had similar VF characteristics to those of type C strains. Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin of V. vulnificus 1908-10 contained 8 A-type repeats (GXXGXXXXXG), 25 B.1-type repeats (TXVGXGXX), 18 B2-type repeats (GGXGXDXXX), and 7 C-type repeats (GGXGXDXXX). The National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) showed that the RtxA protein of V. vulnificus 1908-10 had the effector domain in the order of cross-liking domain (ACD)-C58_PaToxP-like domain- α/β hydrolase-C58_PaToxP-like domain.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A1A03039211).

References

  1. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517-25.  https://doi.org/10.1093/nar/gkz935
  2. Alm RA, Mattick JS. Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene. 1997;192:89-98.  https://doi.org/10.1016/S0378-1119(96)00805-0
  3. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75:3491-500.  https://doi.org/10.1093/jac/dkaa345
  4. Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, et al. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 2003;13:2577-87.  https://doi.org/10.1101/gr.1295503
  5. Cho ED, Park KS. Distribution of pathogenic Vibrio species in seawater in Gomso bay and Byeonsan, West coast of Korea. Korean J Fish Aquat Sci. 2019;52:625-30. 
  6. Dieckmann MA, Beyvers S, Nkouamedjo-Fankep RC, Hanel PHG, Jelonek L, Blom J, et al. EDGAR3.0: comparative genomics and phylogenomics on a scalable infrastructure. Nucleic Acids Res. 2021;49:W185-92.  https://doi.org/10.1093/nar/gkab341
  7. Goo SY, Lee HJ, Kim WH, Han KL, Park DK, Lee HJ, et al. Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infect Immun. 2006;74:5586-94.  https://doi.org/10.1128/IAI.00171-06
  8. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81-91.  https://doi.org/10.1099/ijs.0.64483-0
  9. Hlady WG, Klontz KC. The epidemiology of Vibrio infections in Florida, 1981-1993. J Infect Dis. 1996;173:1176-83.  https://doi.org/10.1093/infdis/173.5.1176
  10. Hobbs M, Mattick JS. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol. 1993;10:233-43.  https://doi.org/10.1111/j.1365-2958.1993.tb01949.x
  11. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286-93.  https://doi.org/10.1093/nar/gkv1248
  12. Jones MK, Oliver JD. Vibrio vulnificus: disease and pathogenesis. Infect Immun. 2009;77:1723-33.  https://doi.org/10.1128/IAI.01046-08
  13. Kim BS. The modes of action of MARTX toxin effector domains. Toxins. 2018;10:507. 
  14. Kim SY, Lee SE, Kim YR, Kim CM, Ryu PY, Choy HE, et al. Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system. Mol Microbiol. 2003;48:1647-64.  https://doi.org/10.1046/j.1365-2958.2003.03536.x
  15. Kim YM, Lee BH, Lee SH, Lee TS. Distribution of Vibrio vulnificus in sea water of Kwangan beach Pusan, Korea. Bull Korean Fish Soc. 1990;22:385-90. 
  16. Kim YM, Shin IS, Chang DS. Distribution of Vibrio vulnificus the coast of South Korea. Bull KoreanFish Soc. 1987;20:591-600. 
  17. Korean Disease Control and Prevention Agency [KDCA]. Infectious disease surveillance yearbook, 2020 [Internet]. KDCA. 2021 [cited 2022 May 7]. https://npt.kdca.go.kr/npt/biz/npp/portal/nppPblctDtaView.do?pblctDtaSeAt=1&pblctDtaSn=2452 
  18. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722-36.  https://doi.org/10.1101/gr.215087.116
  19. Lee HJ, Kim JA, Lee MA, Park SJ, Lee KH. Regulation of haemolysin (VvhA) production by ferric uptake regulator (Fur) in Vibrio vulnificus: repression of vvhA transcription by Fur and proteolysis of VvhA by Fur-repressive exoproteases. Mol Microbiol. 2013;88:813-26.  https://doi.org/10.1111/mmi.12224
  20. Lee Y, Kim BS, Choi S, Lee EY, Park S, Hwang J, et al. Makes caterpillars floppy-like effector-containing MARTX toxins require host ADP-ribosylation factor (ARF) proteins for systemic pathogenicity. Proc Natl Acad Sci USA. 2019;116:18031-40.  https://doi.org/10.1073/pnas.1905095116
  21. Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, et al. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci USA. 1999;96:1071-6.  https://doi.org/10.1073/pnas.96.3.1071
  22. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019;47:D687-92.  https://doi.org/10.1093/nar/gky1080
  23. Liu M, Alice AF, Naka H, Crosa JH. The HlyU protein is a positive regulator of rtxA1, a gene responsible for cytotoxicity and virulence in the human pathogen Vibrio vulnificus. Infect Immun. 2007;75:3282-9.  https://doi.org/10.1128/IAI.00045-07
  24. Manni M, Berkeley MR, Seppey M, Simao FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38:4647-54.  https://doi.org/10.1093/molbev/msab199
  25. Morrison SS, Williams T, Cain A, Froelich B, Taylor C, Baker-Austin C, et al. Pyrosequencing-based comparative genome analysis of Vibrio vulnificus environmental isolates. PLOS ONE. 2012;7:e37553. 
  26. National Center for Biotechnology Information [NCBI]. Genome [Internet]. NCBI. 2023 [cited 2023 Feb 1]. https://www.ncbi.nlm.nih.gov/genome 
  27. Oh HK, Jeong HJ, Jeong GJ, Shin HY, Shin JH, Jung WK, et al. Detection characteristics and antimicrobial resistance of Vibrio vulnificus isolated from sea water along the Gadeok island coast. Korean J Fish Aquat Sci. 2021;54:912-7. 
  28. Oh HK, Jeong HJ, Kim YM. Distribution and molecular characteristics of Vibrio vulnificus isolated from seawater along the Gadeok island coast. Korean J Fish Aquat Sci. 2020;53:688-93.
  29. Oliver JD. Wound infections caused by Vibrio vulnificus and other marine bacteria. Epidemiol Infect. 2005;133:383-91.  https://doi.org/10.1017/S0950268805003894
  30. Pan J, Sun Y, Yao W, Mao H, Zhang Y, Zhu M. Complete genome sequence of the Vibrio vulnificus strain VV2014DJH, a human-pathogenic bacterium isolated from a death case in China. Gut Pathog. 2017;9:67. 
  31. Pang R, Li Y, Liao K, Guo P, Li Y, Yang X, et al. Genome- and proteome-wide analysis of lysine acetylation in Vibrio vulnificus Vv180806 reveals its regulatory roles in virulence and antibiotic resistance. Front Microbiol. 2020;11:591287. 
  32. Park K, Mok JS, Kwon JY, Ryu AR, Shim KB. Seasonal and spatial variation of pathogenic Vibrio species isolated from seawater and shellfish off the Gyeongnam Coast of Korea in 2013-2016. Korean J Fish Aquat Sci. 2019;52:27-34. 
  33. Pettis GS, Mukerji AS. Structure, function, and regulation of the essential virulence factor capsular polysaccharide of Vibrio vulnificus. Int J Mol Sci. 2020;21:3259. 
  34. Roig FJ, Gonzalez-Candelas F, Amaro C. Domain organization and evolution of multifunctional autoprocessing repeats-in-toxin (MARTX) toxin in Vibrio vulnificus. Appl Environ Microbiol. 2011;77:657-68.  https://doi.org/10.1128/AEM.01806-10
  35. Roig FJ, Gonzalez-Candelas F, Sanjuan E, Fouz B, Feil EJ, Llorens C, et al. Phylogeny of Vibrio vulnificus from the analysis of the core-genome: implications for intra-species taxonomy. Front Microbiol. 2018;8:2613. 
  36. Satchell KJF. Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins of vibrios. Microbiol Spectr. 2015;3:10-1128.  https://doi.org/10.1128/microbiolspec.VE-0002-2014
  37. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068-9.  https://doi.org/10.1093/bioinformatics/btu153
  38. Shapiro RL, Altekruse S, Hutwagner L, Bishop R, Hammond R, Wilson S, et al. The role of Gulf coast oysters harvested in warmer months in Vibrio vulnificus infections in the United States, 1988-1996. J Infect Dis. 1998;178:752-9.  https://doi.org/10.1086/515367
  39. Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. New and continuing developments at PROSITE. Nucleic Acids Res. 2012;41:D344-7.  https://doi.org/10.1093/nar/gks1067
  40. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022-7.  https://doi.org/10.1093/molbev/msab120
  41. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLOS ONE. 2014;9:e112963. 
  42. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 2017;45:D535-42.  https://doi.org/10.1093/nar/gkw1017