DOI QR코드

DOI QR Code

Effect of ultrasound assisted rehydration on the quality of dried sea cucumber

  • Bambang Riyanto (Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, IPB University) ;
  • Wahyu Ramadhan (Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, IPB University) ;
  • Rezhelena Moesriffah (Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, IPB University)
  • Received : 2023.05.12
  • Accepted : 2023.06.22
  • Published : 2023.09.30

Abstract

Sea cucumbers (Holothuria scabra), also known as beche-de-mer, are highly valued as a luxurious food item and have been utilized as a traditional tonic food in various Asian countries for centuries. The body walls of sea cucumbers are the main edible part, which are primarily composed of glycosaminoglycan (GAG). The rehydration of dried sea cucumber is a crucial step prior to further processing. The aim of this study was to assess the impact of ultrasound-assisted rehydration (UAR) on the quality of dried sea cucumbers. The experiment used four different rehydration methods, including conventional methods at 27℃ (KV27℃) and 15℃ (KV15℃), as well as a combination of ultrasound at 27℃ with conventional at 15℃ (UAR27 + KV15℃) and ultrasound at 15℃ with conventional at 15℃ (UAR15 + KV15℃). Results indicated that the rehydration rate (RR) was significantly affected by both the rehydration method and the temperature used (p < 0.05). UAR27 + KV15℃ was identified as the most effective method in terms of rehydration behavior and quality characteristics of dried sea cucumber, with a RR of 0.58 ± 0.53 gH2O/hour and reduced rehydration time of up to 28 hours. Moreover, the UAR27 + KV15℃ method demonstrated superior rehydration potential, nutritional value (proximate composition and sulfate content), color, lower energy, and microstructure properties compared to the other methods. The sulfate content and yield of sulfated GAGs were determined to be 89.4 mg/g and 52.8 ㎍/g, respectively. Confirmation of the absorption band of the sulfate group showed the presence of 3-N-acetyl galactosamine at a wavelength of 1,269 cm-1 and C-O-S at 860 cm-1. The sea cucumbers treated with UAR exhibited a GAG content approximately 2.9 times higher than those rehydrated with the conventional method. Eventually, the combination of UAR at 27℃ with conventional at 15℃ methods can significantly accelerate the rehydration of sea cucumber without negatively affecting its physical quality properties.

Keywords

Acknowledgement

This research was partially funded by PT. Indofood Sukses Makmur Tbk. (No. SKE.013/CC/IX/2021) and Center for Coastal and Marine Resource Studies, IPB University, Indonesia.

References

  1. Association of Official Analytical Chemist [AOAC]. Official methods of analysis. 16th ed. Gaithersburg, MD: AOAC; 1998. 
  2. Chahed L, Balti R, Elhiss S, Bouchemal N, Ajzenberg N, Ollivier V, et al. Anticoagulant activity of fucosylated chondroitin sulfate isolated from Cucumaria syracusana. Process Biochem. 2020;91:149-57.  https://doi.org/10.1016/j.procbio.2019.12.006
  3. Chen S, Hu Y, Ye X, Li G, Yu G, Xue C, et al. Sequence determination and anticoagulant and antithrombotic activities of a novel sulfated fucan isolated from the sea cucumber Isostichopus badionotus. Biochim Biophys Acta Gen Subj. 2012;1820:989-1000.  https://doi.org/10.1016/j.bbagen.2012.03.002
  4. Chen Z, Guo X, Wu T. A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrasonics Sonochemistry. 2016;30:28-34.  https://doi.org/10.1016/j.ultsonch.2015.11.026
  5. Cox S, Gupta S, Abu-Ghannam N. Effect of different rehydration temperatures on the moisture, content of phenolic compounds, antioxidant capacity and textural properties of edible Irish brown seaweed. LWT-Food Sci Technol. 2012;47:300-7.  https://doi.org/10.1016/j.lwt.2012.01.023
  6. Cui L, Pan Z, Yue T, Atungulu GG, Berrios J. Effect of ultrasonic treatment of brown rice at different temperatures on cooking properties and quality. Cereal Chem. 2010;87:403-8.  https://doi.org/10.1094/CCHEM-02-10-0034
  7. da Silva ES, Brandao SCR, da Silva AL, da Silva JHF, Coelho ACD, Azoubel PM. Ultrasound-assisted vacuum drying of nectarine. J Food Eng. 2019;246:119-24.  https://doi.org/10.1016/j.jfoodeng.2018.11.013
  8. Dhanapal K, Reddy GVS, Nayak BB, Venkateshwarlu G, Balasubramanian A, Devivaraprasad Reddy A, et al. Changes in instrumental and sensory characteristics of tilapia fish steaks during cold blanching and cooking treatments. Bioscan Int Q J Life Sci. 2013;8:887-92. 
  9. Dong X, Pan R, Deng X, Chen Y, Zhao G, Wang C. Separation, purification, anticoagulant activity and preliminary structural characterization of two sulfated polysaccharides from sea cucumber Acaudina molpadioidea and Holothuria nobilis. Process Biochem. 2014;49:1352-61.  https://doi.org/10.1016/j.procbio.2014.04.015
  10. Dwivedi R, Samanta P, Sharma P, Zhang F, Mishra SK, Kucheryavy P, et al. Structural and kinetic analyses of holothurian sulfated glycans suggest potential treatment for SARSCoV-2 infection. J Biol Chem. 2021;297:101207. 
  11. Gao X, Zhang Z, Liu L, Liu Q. Rheological changes of sea cucumber Stichipus japonicus during different heated times. Int J Fish Aquac. 2019;7:1-5. 
  12. Ghafoor M, Misra NN, Mahadevan K, Tiwari BK. Ultrasound assisted hydration of navy beans (Phaseolus vulgaris). Ultrason Sonochem. 2014;21:409-14.  https://doi.org/10.1016/j.ultsonch.2013.05.016
  13. Hu XQ, Xu J, Xue Y, Li ZJ, Wang JF, Wang JH, Xue CH, Wang YM. Effects of bioactive components of sea cucumber on the serum, liver lipid profile and lipid absorption. Biosci, Biotechnol Biochem. 2012;76:2214-8.  https://doi.org/10.1271/bbb.120495
  14. Jiang P, Jin W, Liu Y, Sun N, Zhu K, Bao Z, et al. Hot-air drying characteristics of sea cucumber (Apostichopus japonicus) and its rehydration properties. J Food Qual. 2022;2022:5147373. 
  15. Krokida MK, Marinos-Kouris D. Rehydration kinetics of dehydrated products. J Food Eng. 2003;57:1-7.  https://doi.org/10.1016/S0260-8774(02)00214-5
  16. Li J, Li S, Wu L, Yang H, Wei C, Ding T, et al. Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity. Carbohydr Polym. 2019;209:82-91.  https://doi.org/10.1016/j.carbpol.2018.12.061
  17. Liu X, Hao J, Shan X, Zhang X, Zhao X, Li Q, et al. Antithrombotic activities of fucosylated chondroitin sulfates and their depolymerized fragments from two sea cucumbers. Carbohydr Polym. 2016;152:343-50.  https://doi.org/10.1016/j.carbpol.2016.06.106
  18. Luo L, Wu M, Xu L, Lian W, Xiang J, Lu F, et al. Comparison of physicochemical characteristics and anticoagulant activities of polysaccharides from three sea cucumbers. Mar Drugs. 2013;11:399-417.  https://doi.org/10.3390/md11020399
  19. Mansour MB, Balti R, Yacoubi L, Ollivier V, Chaubet F, Mounir Maaroufi R. Primary structure and anticoagulant activity of fucoidan from the sea cucumber Holothuria polii. Int J Biol Macromol. 2019;121:1145-53.  https://doi.org/10.1016/j.ijbiomac.2018.10.129
  20. Miano AC, Augusto PED. The hydration of grains: a critical review from description of phenomena to process improvements. Compr Rev Food Sci Food Saf. 2018;17:352-70.  https://doi.org/10.1111/1541-4337.12328
  21. Mourao PAS, Boisson-Vidal C, Tapon-Bretaudiere J, Drouet B, Bros A, Fischer AM. Inactivation of thrombin by a fucosylated chondroitin sulfate from echinoderm. Thromb Res. 2001;102:167-76.  https://doi.org/10.1016/S0049-3848(01)00230-4
  22. Mulet A, Carcel JA, Sanjuan N, Bon J. New food drying technologies: use of ultrasound. Food Sci Technol Int. 2003;9:215-21.  https://doi.org/10.1177/1082013203034641
  23. Pomin VH. Review: an overview about the structure-function relationship of marine sulfated homopolysaccharides with regular chemical structures. Biopolymers. 2009;91:601-9.  https://doi.org/10.1002/bip.21200
  24. Pomin VH. NMR-based dynamics of free glycosaminoglycans in solution. Analyst. 2014;139:3656-65.  https://doi.org/10.1039/C4AN00531G
  25. Rajewska K, Mierzwa D. Influence of ultrasound on the microstructure of plant tissue. Innov Food Sci Emerg Technol. 2017;43:117-29.  https://doi.org/10.1016/j.ifset.2017.07.034
  26. Ramadhan W, Santoso J, Trilaksani W, Rieuwpassa FJ. The role of dryoprotectants on the quality of surimi powder of red tilapia. IOP Conf Ser Earth Environ Sci. 2023;1137:012036. 
  27. Ricce C, Rojas ML, Miano AC, Siche R, Augusto PED. Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Res Int. 2016;89:701-8.  https://doi.org/10.1016/j.foodres.2016.09.030
  28. Riyanto B, Ramadhan W, Putri AI. Specifications of bioinspired material structural foam prosoma of Tachpleus gigas and Carcinocorpius rotundicaud using acoustic impulse response. IOP Conf Ser Earth Environ Sci. 2023;1137:012043. 
  29. Santos KC, Guedes JS, Rojas ML, Carvalho GR, Augusto PED. Enhancing carrot convective drying by combining ethanol and ultrasound as pre-treatments: effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrason Sonochem. 2021;70:105304. 
  30. Shi Z, Zhong S, Yan W, Liu M, Yang Z, Qiao X. The effects of ultrasonic treatment on the freezing rate, physicochemical quality, and microstructure of the back muscle of grass carp (Ctenopharyngodon idella). LWT-Food Sci Technol. 2019;111:301-8.  https://doi.org/10.1016/j.lwt.2019.04.071
  31. Siddiqui R, Boghossian A, Khan NA. Sea cucumber as a therapeutic aquatic resource for human health. Fish Aquat Sci. 2022;25:251-63.  https://doi.org/10.47853/FAS.2022.e23
  32. Song S, Peng H, Wang Q, Liu Z, Dong X, Wen C, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct. 2020;11:7415-20.  https://doi.org/10.1039/D0FO02017F
  33. Uju U, Santoso J, Ramadhan W, Fakhri Abrory M. Extraction of native agar from Gracillaria sp with ultrasonic acceleration at low temperature. J Pengolah Has Perikan Indones. 2018;21:414-22.  https://doi.org/10.17844/jphpi.v21i3.24711
  34. Wang J, Chang Y, Wu F, Xu X, Xue C. Fucosylated chondroitin sulfate is covalently associated with collagen fibrils in sea cucumber Apostichopus japonicus body wall. Carbohydr Polym. 2018;186:439-44.  https://doi.org/10.1016/j.carbpol.2018.01.041
  35. Wu M, Huang R, Wen D, Gao N, He J, Li Z, et al. Structure and effect of sulfated fucose branches on anticoagulant activity of the fucosylated chondroitin sulfate from sea cucumber Thelenata ananas. Carbohydr Polym. 2012;87:862-8.  https://doi.org/10.1016/j.carbpol.2011.08.082
  36. Xiang Y, Su X, Dong M, Chen C. Study on water immersion technology of salted sea cucumber. Food Sci. 2007;28:153-6. 
  37. Xing L, Sun L, Liu S, Li X, Miao T, Zhang L, et al. Comparison of pigment composition and melanin content among white, light-green, dark-green, and purple morphs of sea cucumber, Apostichopus japonicus. Acta Oceanol Sin. 2017;36:45-51.  https://doi.org/10.1007/s13131-017-1056-5
  38. Yildirim A, Oner MD. Electrical conductivity, water absorption, leaching, and color change of chickpea (Cicer arietinum L.) during soaking with ultrasound treatment. Int J Food Prop. 2015;18:1359-72.  https://doi.org/10.1080/10942912.2014.917660
  39. Zhang C, Cha SH. Preventive effects of sea cucumber (Apostichopus japonicus) ethanol extract on palmitate-induced vascular injury in vivo. Fish Aquat Sci. 2022;25:90-100.  https://doi.org/10.47853/FAS.2022.e9
  40. Zhang L, Huang X, Miao S, Zeng S, Zhang Y, Zheng B. Influence of ultrasound on the rehydration of dried sea cucumber (Stichopus japonicus). J Food Eng. 2016;178:203-11.  https://doi.org/10.1016/j.jfoodeng.2016.01.024
  41. Zhu Q, Lin L, Zhao M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: new prospects for sea cucumber polysaccharide based-hypoglycemic functional food. Int J Biol Macromol. 2020;159:34-45.  https://doi.org/10.1016/j.ijbiomac.2020.05.043