DOI QR코드

DOI QR Code

Fabrication and Evaluation of the MXene-Based Wearable Sensor

MXene 기반의 웨어러블 센서 제작 및 평가

  • Youngsam Yoon (Department of Elevtrical Engineering, Korea Military Academy) ;
  • Hojin Lee (Department of Precision Mechanical Engineering, Kyungpook National University) ;
  • Goeun Cha (Department of Advanced Science and Technology Convergence, Graduate School, Kyungpook National University) ;
  • Tae Wook Kim (Department of Precision Mechanical Engineering, Kyungpook National University) ;
  • Jongsung Park (Department of Precision Mechanical Engineering, Kyungpook National University)
  • 윤영삼 (육군사관학교 전자공학과) ;
  • 이호진 (경북대학교 정밀기계공학과) ;
  • 차고은 (경북대학교 대학원 미래과학기술융합학과) ;
  • 김태욱 (경북대학교 정밀기계공학과) ;
  • 박종성 (경북대학교 정밀기계공학과)
  • Received : 2023.08.28
  • Accepted : 2023.09.11
  • Published : 2023.09.30

Abstract

Herein, we propose a simple fabrication method for MXene-coated V-groove sensors for applications. To enhance the sensitivity of this sensor, we applied MXene particles, instead of conventional metal layers, as a sensing material on the sensor's surface. This allows for an easier fabrication, as well as higher sensitivity of the sensor compared to those of our previously demonstrated metal-based V-groove sensor. Additionally, polyurethane-acrylate, a UV-curable liquid polymer, can be easily applied using micro-electromechanical systems-based surface-texture micromachining. The sensor sensitivity is approximately 0.08 /mm, and it can be improved by increasing the number of V-grooves. We believe that the proposed MXene-based wearable sensor offers a great potential in detecting various types of motions characteristic of human activities.

Keywords

Acknowledgement

본 연구는 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2022R1C1C1009200).

References

  1. H. R. Lim, H. S. Kim, R. Qazi, Y. T. Kwon, J. W. Jeong, and W. H. Yeo, "Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment", Adv Mater., Vol. 32, No. 15, p. 1901924, 2020.
  2. Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang, Z. Dai, K. Ji, H. Jiang, X. Chen, and Y. Long, "Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics", Adv. Funct. Mater., Vol. 29, No. 1, p. 1806220, 2019.
  3. M. Zhong, L. Zhang, X. Liu, Y. Zhou, M. Zhang, Y. Wang, L. Yang, and D. Wei, "Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces", Chem. Eng. J., Vol. 412, p. 128649, 2021.
  4. T. C. Duc, J. F. Creemer, and P. M. Sarro, "Piezoresistive cantilever beam for force sensing in two dimensions", IEEE Sen. J., Vol. 7, No. 1, pp. 96-104, 2006. https://doi.org/10.1109/JSEN.2006.886992
  5. J. Lee, S. Kim, J. Lee, D. Yang, B. C. Park, S. Ryu, and I. Park, "A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection", Nanoscale, Vol. 6, No. 20, pp. 11932-11939, 2014. https://doi.org/10.1039/C4NR03295K
  6. M. Go, X. Qi, P. Matteini, B. Hwang, and S. Lim, "High resolution screen-printing of carbon black/carbon nanotube composite for stretchable and wearable strain sensor with controllable sensitivity", Sens. Actuators A Phys., Vol. 332, p. 113098, 2011.
  7. S. H. Ha, S. H. Ha, M. B. Jeon, J. H. Cho, and J. M. Kim, "Highly sensitive and selective multidimensional resistive strain sensors based on a stiffness-variant stretchable substrate", Nanoscale, Vol. 10, No. 11, pp. 5105-5113, 2018. https://doi.org/10.1039/C7NR08118A
  8. Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen, Y. Wang, and B. Li, "Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors", ACS Appl. Mater. Interfaces, Vol. 10, No. 7, pp. 6624-6635, 2018. https://doi.org/10.1021/acsami.7b18677
  9. J. Park, D. S. Kim, Y. Yoon, A. Shanmugasundaram, and D. W. Lee, "Crack-based sensor by using the UV curable polyurethane-acrylate coated film with V-Groove arrays", Micromachines, Vol. 14, No. 1, pp. 62(1)-62(10), 2022. https://doi.org/10.3390/mi14010001
  10. B. Park, J. Kim, D. Kang, C. Jeong, K. S. Kim, J. U. Kim, P. J. Yoo, and T. I. Kim, "Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth", Adv. Mater., Vol. 28, No. 37, pp. 8130-8137, 2016. https://doi.org/10.1002/adma.201602425
  11. D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin, L. Piao, B. Park, K.-Y. Suh, T.-I. Kim, and M. Choi, "Ultrasensitive mechani-cal crack-based sensor inspired by the spider sensory system", Nature, Vol. 516, No. 7530, pp. 222-226, 2014. https://doi.org/10.1038/nature14002
  12. Z. Han, L. Liu, J. Zhang, Q. Han, K. Wang, H. Song, Z. Wang, Z. Jiao, S. Niu, and L. Ren, "High-performance flexible strain sensor with bio-inspired crack arrays", Nanoscale, Vol. 10, No. 32, pp. 15178-151786, 2018. https://doi.org/10.1039/C8NR02514B
  13. T. Lee, Y.W. Choi, G. Lee, P.V. Pikhitsa, D. Kang, S.M. Kim, and M. Choi, "Transparent ITO mechanical crack-based pressure and strain sensor", J. Mater. Chem. C., Vol. 4, No. 42, pp. 9947-9953, 2016. https://doi.org/10.1039/C6TC03329F
  14. Q. Zhong, Y. Li, and G. Zhang, "Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives", Chem. Eng. J., Vol. 409, p. 128099, 2021.
  15. K. R. G. Lim, M. Shekhirev, B. C. Wyatt, B. Anasori, Y. Gogotsi, and Z. W. Seh, "Fundamentals of MXene synthesis", Nat. Synth., Vol. 1, No. 8, pp. 601-614, 2022. https://doi.org/10.1038/s44160-022-00104-6