DOI QR코드

DOI QR Code

Neuroprotective effects of hesperetin on H2O2-induced damage in neuroblastoma SH-SY5Y cells

  • Ha-Rin Moon (Department of Food and Nutrition, Chonnam National University) ;
  • Jung-Mi Yun (Department of Food and Nutrition, Chonnam National University)
  • Received : 2023.03.23
  • Accepted : 2023.07.06
  • Published : 2023.10.01

Abstract

BACKGROUND/OBJECTIVES: Oxidative stress is a fundamental neurodegenerative disease trigger that damages and decimates nerve cells. Neurodegenerative diseases are chronic central nervous system disorders that progress and result from neuronal degradation and loss. Recent studies have extensively focused on neurodegenerative disease treatment and prevention using dietary compounds. Heseperetin is an aglycone hesperidin form with various physiological activities, such as anti-inflammation, antioxidant, and antitumor. However, few studies have considered hesperetin's neuroprotective effects and mechanisms; thus, our study investigated this in hydrogen peroxide (H2O2)-treated SH-SY5Y cells. MATERIALS/METHODS: SH-SY5Y cells were treated with H2O2 (400 µM) in hesperetin absence or presence (10-40 µM) for 24 h. Three-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability, and 4',6-diamidino-2-phenylindole staining allowed us to observe nuclear morphology changes such as chromatin condensation and apoptotic nuclei. Reactive oxygen species (ROS) detection assays measured intracellular ROS production; Griess reaction assays assessed nitric oxide (NO) production. Western blotting and quantitative polymerase chain reactions quantified corresponding mRNA and proteins. RESULTS: Subsequent experiments utilized various non-toxic hesperetin concentrations, establishing that hesperetin notably decreased intracellular ROS and NO production in H2O2-treated SH-SY5Y cells (P < 0.05). Furthermore, hesperetin inhibited H2O2-induced inflammation-related gene expression, including interluekin-6, tumor necrosis factor-α, and nuclear factor kappa B (NF-κB) p65 activation. In addition, hesperetin inhibited NF-κB translocation into H2O2-treated SH-SY5Y cell nuclei and suppressed mitogen-activated protein kinase protein expression, an essential apoptotic cell death regulator. Various apoptosis hallmarks, including shrinkage and nuclear condensation in H2O2-treated cells, were suppressed dose-dependently. Additionally, hesperetin treatment down-regulated Bax/Bcl-2 expression ratios and activated AMP-activated protein kinase-mammalian target of rapamycin autophagy pathways. CONCLUSION: These results substantiate that hesperetin activates autophagy and inhibits apoptosis and inflammation. Hesperetin is a potentially potent dietary agent that reduces neurodegenerative disease onset, progression, and prevention.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A6A3A13073341 and No. 2022R1F1A1062814).

References

  1. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 2019;24:1583.
  2. Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 1996;36:83-106. https://doi.org/10.1146/annurev.pa.36.040196.000503
  3. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, et al. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol 2020;11:694.
  4. Whittemore ER, Loo DT, Watt JA, Cotman CW. A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 1995;67:921-32. https://doi.org/10.1016/0306-4522(95)00108-U
  5. Lindenboim L, Haviv R, Stein R. Bcl-xL inhibits different apoptotic pathways in rat PC12 cells. Neurosci Lett 1998;253:37-40. https://doi.org/10.1016/S0304-3940(98)00602-8
  6. Rojkind M, Dominguez-Rosales JA, Nieto N, Greenwel P. Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci 2002;59:1872-91. https://doi.org/10.1007/PL00012511
  7. Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010;129:154-69. https://doi.org/10.1111/j.1365-2567.2009.03225.x
  8. Hassanzadeh-Taheri M, Ahmadi-Zohan A, Mohammadifard M, Hosseini M. Rosmarinic acid attenuates lipopolysaccharide-induced neuroinflammation and cognitive impairment in rats. J Chem Neuroanat 2021;117:102008.
  9. Ha SK, Moon E, Ju MS, Kim DH, Ryu JH, Oh MS, Kim SY. 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology 2012;63:211-23. https://doi.org/10.1016/j.neuropharm.2012.03.016
  10. Bae MK, Choi S, Ko MJ, Ha HJ, Kim HJ. Effect of OQ21 and melatonin on lipopolysaccharide-induced oxidative stress in rat brain. Yakhak Hoeji 2005;49:347-54.
  11. Choi WH, Oh YS, Kim SR, Ahn JY, Ha TY. Antioxidative and protective effects of Ulmus davidiana var. japonica extracts on glutamate-induced cytotoxicity in PC 12 cells. Korean J Food Sci Technol 2005;37:479-83.
  12. Good PF, Werner P, Hsu A, Olanow CW, Perl DP. Evidence of neuronal oxidative damage in Alzheimer's disease. Am J Pathol 1996;149:21-8.
  13. Radi E, Formichi P, Battisti C, Federico A. Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 2014;42 Suppl 3:S125-52. https://doi.org/10.3233/JAD-132738
  14. Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 2000;45:528-37. https://doi.org/10.1016/S0008-6363(99)00384-3
  15. Kim JH, Yang HK, Hong HJ, Kang WY, Kim DG, Kim SC, Song KJ, King D, Han CH, et al. Neuroprotective effects of Korean kiwifruit against t-BHP-induced cell damage in PC12 cells. Korean J Plant Res 2010;23:165-71.
  16. Chen B, Yue R, Yang Y, Zeng H, Chang W, Gao N, Yuan X, Zhang W, Shan L. Protective effects of (E)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeine against hydrogen peroxide-induced injury in PC12 cells. Neurochem Res 2015;40:531-41. https://doi.org/10.1007/s11064-014-1498-5
  17. Tian X, Guo LP, Hu XL, Huang J, Fan YH, Ren TS, Zhao QC. Protective effects of Arctium lappa L. roots against hydrogen peroxide-induced cell injury and potential mechanisms in SH-SY5Y cells. Cell Mol Neurobiol 2015;35:335-44. https://doi.org/10.1007/s10571-014-0129-7
  18. Chang KC, Liu PF, Chang CH, Lin YC, Chen YJ, Shu CW. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell Biosci 2022;12:1.
  19. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013;19:983-97. https://doi.org/10.1038/nm.3232
  20. Tong W, Ju L, Qiu M, Xie Q, Chen Y, Shen W, Sun W, Wang W, Tian J. Liraglutide ameliorates non-alcoholic fatty liver disease by enhancing mitochondrial architecture and promoting autophagy through the SIRT1/SIRT3-FOXO3a pathway. Hepatol Res 2016;46:933-43. https://doi.org/10.1111/hepr.12634
  21. Yang L, Shi J, Wang X, Zhang R. Curcumin alleviates D-galactose-induced cardiomyocyte senescence by promoting autophagy via the SIRT1/AMPK/mTOR pathway. Evid Based Complement Alternat Med 2022;2022:2990843.
  22. Park SK, Seong RK, Kim JA, Son SJ, Kim Y, Yokozawa T, Shin OS. Oligonol promotes anti-aging pathways via modulation of SIRT1-AMPK-Autophagy Pathway. Nutr Res Pract 2016;10:3-10. https://doi.org/10.4162/nrp.2016.10.1.3
  23. Bockaert J, Marin P. mTOR in brain physiology and pathologies. Physiol Rev 2015;95:1157-87. https://doi.org/10.1152/physrev.00038.2014
  24. Carosi JM, Sargeant TJ. Rapamycin and Alzheimer disease: a double-edged sword? Autophagy 2019;15:1460-2. https://doi.org/10.1080/15548627.2019.1615823
  25. Velmurugan BK, Rathinasamy B, Lohanathan BP, Thiyagarajan V, Weng CF. Neuroprotective role of phytochemicals. Molecules 2018;23:2485.
  26. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res 2015;29:323-31. https://doi.org/10.1002/ptr.5256
  27. Morin B, Nichols LA, Zalasky KM, Davis JW, Manthey JA, Holland LJ. The citrus flavonoids hesperetin and nobiletin differentially regulate low density lipoprotein receptor gene transcription in HepG2 liver cells. J Nutr 2008;138:1274-81. https://doi.org/10.1093/jn/138.7.1274
  28. Marletta MA. Nitric oxide synthase structure and mechanism. J Biol Chem 1993;268:12231-4. https://doi.org/10.1016/S0021-9258(18)31375-9
  29. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011;21:103-15. https://doi.org/10.1038/cr.2010.178
  30. Yue J, Lopez JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci 2020;21:2346.
  31. Larson EB. Prospects for delaying the rising tide of worldwide, late-life dementias. Int Psychogeriatr 2010;22:1196-202. https://doi.org/10.1017/S1041610210001080
  32. Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladacenco O, Roza E, Costachescu B, Grumezescu AM, Teleanu RI. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci 2022;23:5938.
  33. Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016;2016:3164734.
  34. Liu JT, Dong MH, Zhang JQ, Bai Y, Kuang F, Chen LW. Microglia and astroglia: the role of neuroinflammation in lead toxicity and neuronal injury in the brain. Neuroimmunol Neuroinflamm 2015;2:131-7. https://doi.org/10.4103/2347-8659.156980
  35. Amato A, Terzo S, Mule F. Natural compounds as beneficial antioxidant agents in neurodegenerative disorders: a focus on Alzheimer's disease. Antioxidants 2019;8:608.
  36. Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. Neuroreport 2008;19:1329-33. https://doi.org/10.1097/WNR.0b013e32830b8ae1
  37. Song X, Liu B, Cui L, Zhou B, Liu W, Xu F, Hayashi T, Hattori S, Ushiki-Kaku Y, Tashiro SI, et al. Silibinin ameliorates anxiety/depression-like behaviors in amyloid β-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus. Physiol Behav 2017;179:487-93. https://doi.org/10.1016/j.physbeh.2017.07.023
  38. Kumar V, Giacobini E. Cerebrospinal fluid choline, and acetylcholinesterase activity in familial vs. non-familial Alzheimer's disease patients. Arch Gerontol Geriatr 1988;7:111-7. https://doi.org/10.1016/0167-4943(88)90025-8
  39. Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 2015;124:64-74. https://doi.org/10.1016/j.lfs.2014.12.030
  40. Elstner EF. Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol 1982;33:73-96. https://doi.org/10.1146/annurev.pp.33.060182.000445
  41. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239-47. https://doi.org/10.1038/35041687
  42. Ma J, Gao SS, Yang HJ, Wang M, Cheng BF, Feng ZW, Wang L. Neuroprotective effects of proanthocyanidins, natural flavonoids derived from plants, on rotenone-induced oxidative stress and apoptotic cell death in human neuroblastoma SH-SY5Y cells. Front Neurosci 2018;12:369.
  43. Ling APK, Chan HH, Koh RY, Wong YP. Neuroprotective roles of asiaticoside on hydrogen peroxide-induced toxicity in SH-SY5Y cells. J Fundam Appl Sci 2017;9:636-49. https://doi.org/10.4314/jfas.v9i2.2
  44. Andreasson KI, Bachstetter AD, Colonna M, Ginhoux F, Holmes C, Lamb B, Landreth G, Lee DC, Low D, Lynch MA, et al. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J Neurochem 2016;138:653-93. https://doi.org/10.1111/jnc.13667
  45. Mukaida N, Ishikawa Y, Ikeda N, Fujioka N, Watanabe S, Kuno K, Matsushima K. Novel insight into molecular mechanism of endotoxin shock: biochemical analysis of LPS receptor signaling in a cell-free system targeting NF-κB and regulation of cytokine production/action through β2 integrin in vivo. J Leukoc Biol 1996;59:145-51. https://doi.org/10.1002/jlb.59.2.145
  46. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017;2:17023.
  47. Schmedtje JF Jr, Ji YS, Liu WL, DuBois RN, Runge MS. Hypoxia induces cyclooxygenase-2 via the NF-κB p65 transcription factor in human vascular endothelial cells. J Biol Chem 1997;272:601-8. https://doi.org/10.1074/jbc.272.1.601
  48. Baldwin AS Jr. The NF-κB and I κB proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649-83. https://doi.org/10.1146/annurev.immunol.14.1.649
  49. Park JH, Kim SH, Lee SR. Inhibitory effect of Petalonia binghamiae on neuroinflammation in LPS-stimulated microglial cells. J Nutr Health 2017;50:25-31. https://doi.org/10.4163/jnh.2017.50.1.25
  50. Shal B, Ding W, Ali H, Kim YS, Khan S. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer's disease. Front Pharmacol 2018;9:548.
  51. Naoi M, Shamoto-Nagai M, Maruyama W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. Future Neurol 2019;14:FNL9.
  52. Park CH, Kim JH, Choi SH, Shin YS, Lee SW, Cho EJ. Protective effects of Glycyrrhiza uralensis Radix extract and Its active compounds on H2O2-induced apoptosis of C6 glial cells. Korean J Med Crop Sci 2017;25:315-21. https://doi.org/10.7783/KJMCS.2017.25.5.315
  53. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35:495-516. https://doi.org/10.1080/01926230701320337
  54. Su B, Karin M. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol 1996;8:402-11. https://doi.org/10.1016/S0952-7915(96)80131-2
  55. Ruffels J, Griffin M, Dickenson JM. Activation of ERK1/2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: role of ERK1/2 in H2O2-induced cell death. Eur J Pharmacol 2004;483:163-73. https://doi.org/10.1016/j.ejphar.2003.10.032
  56. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 2011;2011:792639.
  57. Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J 2010;277:2-21. https://doi.org/10.1111/j.1742-4658.2009.07366.x
  58. Subramaniam S, Unsicker K. ERK and cell death: ERK1/2 in neuronal death. FEBS J 2010;277:22-9. https://doi.org/10.1111/j.1742-4658.2009.07367.x
  59. Ouyang M, Shen X. Critical role of ASK1 in the 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem 2006;97:234-44. https://doi.org/10.1111/j.1471-4159.2006.03730.x
  60. Kim SD, Moon CK, Eun SY, Ryu PD, Jo SA. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis. Biochem Biophys Res Commun 2005;328:326-34. https://doi.org/10.1016/j.bbrc.2004.11.173
  61. Feng HJ, Bao YL, Liang ZP, Zhao FP, Xu SE, Xu W, Zhao C, Qin G. Silencing of FANCD2 enhances the radiosensitivity of metastatic cervical lymph node-derived head and neck squamous cell carcinoma HSC-4 cells. Int J Oncol 2017;50:1241-50. https://doi.org/10.3892/ijo.2017.3902
  62. Su JC, Lin KL, Chien CM, Lu CM, Chen YL, Chang LS, Lin SR. Novel indoloquinoline derivative, IQDMA, induces G2/M phase arrest and apoptosis in A549 cells through JNK/p38 MAPK signaling activation. Life Sci 2009;85:505-16. https://doi.org/10.1016/j.lfs.2009.08.006
  63. Lee S, Youn K, Jeong WS, Ho CT, Jun M. Protective effects of red ginseng oil against Aβ25-35-induced neuronal apoptosis and inflammation in PC12 cells. Int J Mol Sci 2017;18:2218.
  64. Tang S, Li C, Suo Z, Xu Y, Wei K, Zhao L, Huang H, Liu X, Liu D, Li X. Neuroprotective effects of savinin on LPS-induced neuroinflammation in vivo via regulating MAPK/NF-κB pathway and NLRP3 inflammasome activation. Molecules 2023;28:1575.
  65. Wang MM, Feng YS, Yang SD, Xing Y, Zhang J, Dong F, Zhang F. The relationship between autophagy and brain plasticity in neurological diseases. Front Cell Neurosci 2019;13:228.
  66. Kim HJ, Kim J, Kang KS, Lee KT, Yang HO. Neuroprotective effect of chebulagic acid via autophagy induction in SH-SY5Y cells. Biomol Ther (Seoul) 2014;22:275-81. https://doi.org/10.4062/biomolther.2014.068
  67. Shirgadwar SM, Kumar R, Preeti K, Khatri DK, Singh SB. Neuroprotective effect of phloretin in rotenone-induced mice model of Parkinson's disease: modulating mTOR-NRF2-p62 mediated autophagy-oxidative stress crosstalk. J Alzheimers Dis. Forthcoming 2022.
  68. Xi X, Zou C, Ye Z, Huang Y, Chen T, Hu H. Pioglitazone protects tubular cells against hypoxia/reoxygenation injury through enhancing autophagy via AMPK-mTOR signaling pathway. Eur J Pharmacol 2019;863:172695.
  69. Hill JL, Kobori N, Zhao J, Rozas NS, Hylin MJ, Moore AN, Dash PK. Traumatic brain injury decreases AMP-activated protein kinase activity and pharmacological enhancement of its activity improves cognitive outcome. J Neurochem 2016;139:106-19. https://doi.org/10.1111/jnc.13726
  70. Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci U S A 2002;99:467-72. https://doi.org/10.1073/pnas.012605299
  71. Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 2010;33:67-75. https://doi.org/10.1016/j.tins.2009.11.003
  72. Ravikumar B, Berger Z, Vacher C, O'Kane CJ, Rubinsztein DC. Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 2006;15:1209-16. https://doi.org/10.1093/hmg/ddl036
  73. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012;13:251-62. https://doi.org/10.1038/nrm3311
  74. Wang Z, Zhou L, Zheng X, Chen G, Pan R, Li J, Liu W. Autophagy protects against PI3K/Akt/mTOR-mediated apoptosis of spinal cord neurons after mechanical injury. Neurosci Lett 2017;656:158-64. https://doi.org/10.1016/j.neulet.2017.07.036
  75. Stacchiotti A, Corsetti G. Natural compounds and autophagy: allies against neurodegeneration. Front Cell Dev Biol 2020;8:555409.
  76. Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals 2011;19:163-74. https://doi.org/10.1159/000328516
  77. Chen J, Deng X, Liu N, Li M, Liu B, Fu Q, Qu R, Ma S. Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathway. J Funct Foods 2016;22:463-76. https://doi.org/10.1016/j.jff.2016.01.036
  78. Zhao Y, Wang Q, Wang Y, Li J, Lu G, Liu Z. Glutamine protects against oxidative stress injury through inhibiting the activation of PI3K/Akt signaling pathway in parkinsonian cell model. Environ Health Prev Med 2019;24:4.
  79. Wu Y, Cui J. (-)-Epigallocatechin-3-gallate provides neuroprotection via AMPK activation against traumatic brain injury in a mouse model. Naunyn Schmiedebergs Arch Pharmacol 2020;393:2209-20. https://doi.org/10.1007/s00210-020-01841-1
  80. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J, Ferruzzi MG, Davies P, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem 2010;285:9100-13. https://doi.org/10.1074/jbc.M109.060061
  81. Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP, Coccia R, Perluigi M, Butterfield DA. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem 2015;133:739-49. https://doi.org/10.1111/jnc.13037
  82. Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, O'Connor R, O'Neill C. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J Neurochem 2005;93:105-17. https://doi.org/10.1111/j.1471-4159.2004.02949.x
  83. Wang Y, Ma Q, Ma X, Zhang Z, Liu N, Wang M. Role of mammalian target of rapamycin signaling in autophagy and the neurodegenerative process using a senescence accelerated mouse-prone 8 model. Exp Ther Med 2017;14:1051-7. https://doi.org/10.3892/etm.2017.4618
  84. Gao L, Li X, Meng S, Ma T, Wan L, Xu S. Chlorogenic acid alleviates Aβ25-35-induced autophagy and cognitive impairment via the mTOR/TFEB signaling pathway. Drug Des Devel Ther 2020;14:1705-16. https://doi.org/10.2147/DDDT.S235969