DOI QR코드

DOI QR Code

Natural Products as Potential Therapeutic Strategies for Parkinson's Disease

  • Hae-Rim Cha (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University) ;
  • Mi-Ran Lee (Department of Biomedical Laboratory Science, Jungwon University) ;
  • Hyun-Jeong Cho (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University)
  • Received : 2023.07.21
  • Accepted : 2023.09.05
  • Published : 2023.09.30

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects millions of people worldwide. The conventional treatment model for PD have harmful side effects, such as dyskinesia, hallucinations, nausea, and fatigue, and are expensive. As a result, natural products derived from medicinal herbs, fruits, and vegetables have emerged as potential therapeutic strategies for PD. These natural products have been traditionally used to treat various diseases and have been shown to possess anti-oxidative and anti-inflammatory properties, as well as inhibitory roles in protein misfolding, mitochondrial homeostasis, neuroinflammation and other neuroprotective processes. In addition, they have fewer side effects and are generally less expensive than conventional drugs. It also discusses the limitations of current treatments and the potential of natural remedies derived from plants to treat PD in new ways or as supplements to existing treatments. The multifunctional mechanisms of medicinal plants that may be utilized to treat PD are also discussed, including the modulation of neurotransmitter systems, the enhancement of neurotrophic factors, and the inhibition of apoptosis. While more research is needed to fully understand their mechanisms of action and efficacy, natural products have the potential to provide safer and more effective treatment options for patients with PD.

Keywords

Acknowledgement

This research was supported by the National Research Foundation (NRF) funded by the Korean government (No. 2022R1F1A10651621230882063400102).

References

  1. Agid Y. Parkinson's disease: Pathophysiology. The Lancet. 1991. 337: 1321-1324. https://doi.org/10.1016/0140-6736(91)92989-F
  2. Anglade P, Vyas S, Javoy-Agid F, Herrero Ezquerro MT, Michel P, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch E, Agid Y. Apoptosis and autophagy in nigral neurons of patients with parkinson's disease. Histology and Histopathology. 1997.
  3. Aquino CC, Fox SH. Clinical spectrum of levodopa-induced complications. Mov Disord. 2015. 30: 80-89. https://doi.org/10.1002/mds.26125
  4. Bae J, Lee D, Kim YK, Gil M, Lee JY, Lee KJ. Berberine protects 6-hydroxydopamine-induced human dopaminergic neuronal cell death through the induction of heme oxygenase-1. Mol Cells. 2013. 35: 151-157. https://doi.org/10.1007/s10059-013-2298-5
  5. Braak H, Del Tredici K, Rub U, De Vos RA, Steur ENJ, Braak E. Staging of brain pathology related to sporadic parkinson's disease. Neurobiology of Aging. 2003. 24: 197-211. https://doi.org/10.1016/S0197-4580(02)00065-9
  6. Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth Jr W, Swanson PD. Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. American Journal of Epidemiology. 2002. 155: 732-738. https://doi.org/10.1093/aje/155.8.732
  7. Chen Z, Trapp BD. Microglia and neuroprotection. J Neurochem. 2016. 136 Suppl 1: 10-17. https://doi.org/10.1111/jnc.13062
  8. Cheng Y, He G, Mu X, Zhang T, Li X, Hu J, Xu B, Du G. Neuroprotective effect of baicalein against mptp neurotoxicity: Behavioral, biochemical and immunohistochemical profile. Neurosci Lett. 2008. 441: 16-20. https://doi.org/10.1016/j.neulet.2008.05.116
  9. Choi BK, Choi MG, Kim JY, Yang Y, Lai Y, Kweon DH, Lee NK, Shin YK. Large alpha-synuclein oligomers inhibit neuronal snare-mediated vesicle docking. Proc Natl Acad Sci U S A. 2013. 110: 4087-4092. https://doi.org/10.1073/pnas.1218424110
  10. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M. Pathogenic lysosomal depletion in parkinson's disease. J Neurosci. 2010. 30: 12535-12544. https://doi.org/10.1523/JNEUROSCI.1920-10.2010
  11. Duda JE, Giasson BI, Mabon ME, Lee VM, Trojanowski JQ. Novel antibodies to synuclein show abundant striatal pathology in lewy body diseases. Ann Neurol. 2002. 52: 205-210. https://doi.org/10.1002/ana.10279
  12. Emmanouilidou E, Stefanis L, Vekrellis K. Cell-produced alpha-synuclein oligomers are targeted to, and impair, the 26s proteasome. Neurobiol Aging. 2010. 31: 953-968. https://doi.org/10.1016/j.neurobiolaging.2008.07.008
  13. Engelhardt JF. Redox-mediated gene therapies for environmental injury: Approaches and concepts. Antioxidants & Redox Signaling. 1999. 1: 5-27. https://doi.org/10.1089/ars.1999.1.1-5
  14. Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ. Neuroprotective effect of natural products against alzheimer's disease. Neurochemical Research. 2012. 37: 1829-1842. https://doi.org/10.1007/s11064-012-0799-9
  15. Fremont L. Biological effects of resveratrol. Life Sciences. 2000. 66: 663-673. https://doi.org/10.1016/S0024-3205(99)00410-5
  16. Goetz CG. The history of parkinson's disease: Early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med. 2011. 1: a008862.
  17. Hacker CD, Perlmutter JS, Criswell SR, Ances BM, Snyder AZ. Resting state functional connectivity of the striatum in parkinson's disease. Brain. 2012. 135: 3699-3711. https://doi.org/10.1093/brain/aws281
  18. Haddad D, Nakamura K. Understanding the susceptibility of dopamine neurons to mitochondrial stressors in parkinson's disease. FEBS Lett. 2015. 589: 3702-3713. https://doi.org/10.1016/j.febslet.2015.10.021
  19. Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008. 4: 600-609. https://doi.org/10.1038/ncpneuro0924
  20. Imanshahidi M, Hosseinzadeh H. Pharmacological and therapeutic effects of berberis vulgaris and its active constituent, berberine. Phytother Res. 2008. 22: 999-1012. https://doi.org/10.1002/ptr.2399
  21. Jenner P. Current concepts on the etiology and pathogenesis of parkinson disease. Principles and Practice of Movement Disorders: Churchill Livingstone. 2007. 672.
  22. Kalia LV, Lang AE. Parkinson's disease. Lancet. 2015. 386: 896-912. https://doi.org/10.1016/S0140-6736(14)61393-3
  23. Khan MM, Ahmad A, Ishrat T, Khan MB, Hoda MN, Khuwaja G, Raza SS, Khan A, Javed H, Vaibhav K, Islam F. Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of parkinson's disease. Brain Res. 2010. 1328: 139-151. https://doi.org/10.1016/j.brainres.2010.02.031
  24. Kim M, Cho K-H, Shin M-S, Lee J-M, Cho H-S, Kim C-J, Shin D-H, Yang HJ. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with parkinson's disease. International Journal of Molecular Medicine. 2014. 33: 870-878. https://doi.org/10.3892/ijmm.2014.1656
  25. Kim MS, Lee JI, Lee WY, Kim SE. Neuroprotective effect of Ginkgo biloba l. Extract in a rat model of parkinson's disease. Phytother Res. 2004. 18: 663-666. https://doi.org/10.1002/ptr.1486
  26. Kuang L, Cao X, Lu Z. Baicalein protects against rotenone-induced neurotoxicity through induction of autophagy. Biological and Pharmaceutical Bulletin. 2017. 40: 1537-1543. https://doi.org/10.1248/bpb.b17-00392
  27. Kulkarni SK, Dhir A. On the mechanism of antidepressant-like action of berberine chloride. Eur J Pharmacol. 2008. 589: 163-172. https://doi.org/10.1016/j.ejphar.2008.05.043
  28. Kwon H-J, Park J-H, Kim G-T, Park Y-D. Determination of madecassoside and asiaticoside contents of c. Asiatica leaf and c. Asiatica-containing ointment and dentifrice by hplc-coupled pulsed amperometric detection. Microchemical Journal. 2011. 98: 115-120. https://doi.org/10.1016/j.microc.2010.12.008
  29. Lee HJ, Noh YH, Lee DY, Kim YS, Kim KY, Chung YH, Lee WB, Kim SS. Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in sh-sy5y cells. Eur J Cell Biol. 2005. 84: 897-905. https://doi.org/10.1016/j.ejcb.2005.07.003
  30. Lees AJ, Blackburn NA, Campbell VL. The nighttime problems of parkinson's disease. Clinical Neuropharmacology. 1988. 11: 512-519. https://doi.org/10.1097/00002826-198812000-00004
  31. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents n-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurodegeneration. Journal of Neurochemistry. 2001. 78: 1073-1082. https://doi.org/10.1046/j.1471-4159.2001.00490.x
  32. Loder MK, Melikian HE. The dopamine transporter constitutively internalizes and recycles in a protein kinase c-regulated manner in stably transfected pc12 cell lines. J Biol Chem. 2003. 278: 22168-22174. https://doi.org/10.1074/jbc.M301845200
  33. Lu JH, Ardah MT, Durairajan SS, Liu LF, Xie LX, Fong WF, Hasan MY, Huang JD, El-Agnaf OM, Li M. Baicalein inhibits formation of alpha-synuclein oligomers within living cells and prevents abeta peptide fibrillation and oligomerisation. Chembiochem. 2011. 12: 615-624. https://doi.org/10.1002/cbic.201000604
  34. Luo C, Song W, Chen Q, Zheng Z, Chen K, Cao B, Yang J, Li J, Huang X, Gong Q. Reduced functional connectivity in early-stage drug-naive parkinson's disease: A resting-state fmri study. Neurobiology of Aging. 2014. 35: 431-441. https://doi.org/10.1016/j.neurobiolaging.2013.08.018
  35. MacMahon Copas AN, McComish SF, Fletcher JM, Caldwell MA. The pathogenesis of parkinson's disease: A complex interplay between astrocytes, microglia, and t lymphocytes? Frontiers in Neurology. 2021. 12: 666737.
  36. Moors T, Paciotti S, Chiasserini D, Calabresi P, Parnetti L, Beccari T, van de Berg WD. Lysosomal dysfunction and alpha-synuclein aggregation in parkinson's disease: Diagnostic links. Mov Disord. 2016. 31: 791-801. https://doi.org/10.1002/mds.26562
  37. Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH Jr., Brown H, Tiwari A, Hayward L, Edgar J, Nave KA, Garberrn J, Atagi Y, Song Y, Pigino G, Brady ST. Axonal transport defects in neurodegenerative diseases. J Neurosci. 2009. 29: 12776-12786. https://doi.org/10.1523/JNEUROSCI.3463-09.2009
  38. Mudo G, Makela J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Malkia A, Bonomo A, Kairisalo M, Aguirre JA, Korhonen L, Belluardo N, Lindholm D. Transgenic expression and activation of pgc-1alpha protect dopaminergic neurons in the mptp mouse model of parkinson's disease. Cell Mol Life Sci. 2012. 69: 1153-1165. https://doi.org/10.1007/s00018-011-0850-z
  39. Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in parkinson's disease. Advances in Research on Neurodegeneration. 2000. 277-290.
  40. Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. Scavenging effects of tea catechins and their derivatives on 1, 1-diphenyl-2-picrylhydrazyl radical. Free Radical Biology and Medicine. 1996. 21: 895-902. https://doi.org/10.1016/0891-5849(96)00237-7
  41. Obeso J, Stamelou M, Goetz C, Poewe W, Lang A, Weintraub D, Burn D, Halliday GM, Bezard E, Przedborski S. Past, present, and future of parkinson's disease: A special essay on the 200th anniversary of the shaking palsy. Movement Disorders. 2017. 32: 1264-1310. https://doi.org/10.1002/mds.27115
  42. Oliveira ALB, Monteiro VVS, Navegantes-Lima KC, Reis JF, Gomes RS, Rodrigues DVS, Gaspar SLF, Monteiro MC. Resveratrol role in autoimmune disease-a mini-review. Nutrients. 2017. 9.
  43. Oyama Y, Chikahisa L, Ueha T, Kanemaru K, Noda K. Ginkgo biloba extract protects brain neurons against oxidative stress induced by hydrogen peroxide. Brain Research. 1996. 712: 349-352. https://doi.org/10.1016/0006-8993(95)01440-3
  44. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem. 2004. 279: 18614-18622. https://doi.org/10.1074/jbc.M401135200
  45. Perlson E, Maday S, Fu MM, Moughamian AJ, Holzbaur EL. Retrograde axonal transport: Pathways to cell death? Trends Neurosci. 2010. 33: 335-344. https://doi.org/10.1016/j.tins.2010.03.006
  46. Prodoehl J, Burciu RG, Vaillancourt DE. Resting state functional magnetic resonance imaging in parkinson's disease. Current Neurology and Neuroscience Reports. 2014. 14: 1-8. https://doi.org/10.1007/s11910-014-0448-6
  47. Rao SS, Hofmann LA, Shakil A. Parkinson's disease: Diagnosis and treatment. American Family Physician. 2006. 74: 2046-2054.
  48. Roberts RF, Wade-Martins R, Alegre-Abarrategui J. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in parkinson's disease brain. Brain. 2015. 138: 1642-1657. https://doi.org/10.1093/brain/awv040
  49. Rojas P, Serrano-Garcia N, Mares-Samano JJ, Medina-Campos ON, Pedraza-Chaverri J, Ogren SO. Egb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice: Role of oxidative stress. Eur J Neurosci. 2008. 28: 41-50. https://doi.org/10.1111/j.1460-9568.2008.06314.x
  50. Ryan BJ, Hoek S, Fon EA, Wade-Martins R. Mitochondrial dysfunction and mitophagy in parkinson's: From familial to sporadic disease. Trends Biochem Sci. 2015. 40: 200-210. https://doi.org/10.1016/j.tibs.2015.02.003
  51. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Riceevans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Archives of Biochemistry and Biophysics. 1995. 322: 339-346. https://doi.org/10.1006/abbi.1995.1473
  52. Sasmita AO, Ling APK, Voon KGL, Koh RY, Wong YP. Madecassoside activates anti-neuroinflammatory mechanisms by inhibiting lipopolysaccharide‑induced microglial inflammation. International Journal of Molecular Medicine. 2018. 41: 3033-3040. https://doi.org/10.3892/ijmm.2018.3479
  53. Schneider RB, Iourinets J, Richard IH. Parkinson's disease psychosis: Presentation, diagnosis and management. Neurodegenerative Disease Management. 2017. 7: 365-376. https://doi.org/10.2217/nmt-2017-0028
  54. Sharma R, Kabra A, Rao M, Prajapati P. Herbal and holistic solutions for neurodegenerative and depressive disorders: Leads from ayurveda. Current Pharmaceutical Design. 2018. 24: 2597-2608. https://doi.org/10.2174/1381612824666180821165741
  55. Shim JH, Yoon SH, Kim KH, Han JY, Ha JY, Hyun DH, Paek SH, Kang UJ, Zhuang X, Son JH. The antioxidant trolox helps recovery from the familial parkinson's disease-specific mitochondrial deficits caused by pink1- and dj-1-deficiency in dopaminergic neuronal cells. Mitochondrion. 2011. 11: 707-715. https://doi.org/10.1016/j.mito.2011.05.013
  56. Solayman M, Islam MA, Alam F, Khalil I, Amjad Kamal M, Hua Gan S. Natural products combating neurodegeneration: Parkinson's disease. Current Drug Metabolism. 2017. 18: 50-61. https://doi.org/10.2174/1389200217666160709204826
  57. Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M. Α-synuclein in lewy bodies. Nature. 1997. 388: 839-840. https://doi.org/10.1038/42166
  58. Tan EK, Tan C, Fook-Chong SM, Lum SY, Chai A, Chung H, Shen H, Zhao Y, Teoh ML, Yih Y, Pavanni R, Chandran VR, Wong MC. Dose-dependent protective effect of coffee, tea, and smoking in parkinson's disease: A study in ethnic chinese. J Neurol Sci. 2003. 216: 163-167. https://doi.org/10.1016/j.jns.2003.07.006
  59. Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K. Alteration of autophagosomal proteins (lc3, gabarap and gate-16) in lewy body disease. Neurobiol Dis. 2011. 43: 690-697. https://doi.org/10.1016/j.nbd.2011.05.022
  60. Thomas MT, Kurup R, Johnson AJ, Chandrika SP, Mathew PJ, Dan M, Baby S. Elite genotypes/chemotypes, with high contents of madecassoside and asiaticoside, from sixty accessions of centella asiatica of south india and the andaman islands: For cultivation and utility in cosmetic and herbal drug applications. Industrial Crops and Products. 2010. 32: 545-550. https://doi.org/10.1016/j.indcrop.2010.07.003
  61. von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci. 2015. 7: 124.
  62. Wang J-Y, Chiu J-H, Tsai T-H, Tsou A-P, Hu C-P, Chi C-W, Yeh S-F, Lui W-Y, Wu C-W, Chou C-K. Gene expression profiling predicts liver responses to a herbal remedy after partial hepatectomy in mice. International Journal of Molecular Medicine. 2005. 16: 221-231. https://doi.org/10.3892/ijmm.16.2.221
  63. Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in alzheimer's disease. Ann Transl Med. 2015. 3: 136.
  64. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A. 2011. 108: 4194-4199. https://doi.org/10.1073/pnas.1100976108
  65. Wu C-F, Yang J-Y, Wang F, Wang X-X. Resveratrol: Botanical origin, pharmacological activity and applications. Chinese Journal of Natural Medicines. 2013. 11: 1-15. https://doi.org/10.1016/S1875-5364(13)60001-1
  66. Xilouri M, Brekk OR, Stefanis L. Autophagy and alpha-synuclein: Relevance to parkinson's disease and related synucleopathies. Mov Disord. 2016. 31: 178-192. https://doi.org/10.1002/mds.26477
  67. Xu CL, Qu R, Zhang J, Li LF, Ma SP. Neuroprotective effects of madecassoside in early stage of parkinson's disease induced by mptp in rats. Fitoterapia. 2013. 90: 112-118. https://doi.org/10.1016/j.fitote.2013.07.009
  68. Zhang C, Li C, Chen S, Li Z, Jia X, Wang K, Bao J, Liang Y, Wang X, Chen M, Li P, Su H, Wan JB, Lee SMY, Liu K, He C. Berberine protects against 6-ohda-induced neurotoxicity in pc12 cells and zebrafish through hormetic mechanisms involving pi3k/akt/bcl-2 and nrf2/ho-1 pathways. Redox Biol. 2017. 11: 1-11. https://doi.org/10.1016/j.redox.2016.10.019
  69. Zhu JH, Guo F, Shelburne J, Watkins S, Chu CT. Localization of phosphorylated erk/map kinases to mitochondria and autophagosomes in lewy body diseases. Brain Pathology. 2003. 13: 473-481. https://doi.org/10.1111/j.1750-3639.2003.tb00478.x