DOI QR코드

DOI QR Code

참가자 간 표상 유사성 분석을 이용한 정서 자극 반응 일치성 비교: 행동 및 생리 데이터를 기반으로

Consistency of Responses to Affective Stimuli Across Individuals using Intersubject Representational Similarity Analysis based on Behavioral and Physiological Data

  • 투고 : 2022.11.16
  • 심사 : 2022.12.28
  • 발행 : 2023.09.30

초록

본 연구는 참가자 간 표상 유사성 분석(intersubject representation similarity analysis: IS-RSA)을 이용하여 3개의 선행연구에서 얻어진 데이터의 참가자 반응 일치성 패턴을 확인하고 각 실험의 정서 조건 간 차이가 있는지 살펴보았다. 3개의 실험은 각각 ASMR 자극, 시각 및 청각 자극, 시계열적 정서 동영상 자극을 사용하였으며 각 실험의 조건에 맞게 정서 평정치와 생리측정치를 측정하였다. 참가자 간 표상 유사성 분석을 계산하기 위해서 각 실험에 있는 각 자극에 대한 참가자들의 측정치를 쌍별로 피어슨 상관계수를 구하였다. 실험의 조건 간 비교를 위해 분산분석과 평균을 비교하였다. 연구 결과, ASMR과 시각 및 청각 데이터의 참가자 간 반응의 일치성은 시계열적 정서동영상 참가자들 반응의 일치성에 비해 일관적이었다. ASMR 실험은 긍정 자극에서 참가자 간 반응의 일치성이 높았다. 청각 및 시각 실험은 높은 각성수준과 시각 자극에서 참가자들의 반응 일치성이 높았다. 본 연구 결과는 생리적, 행동적 반응에 대한 측정치의 IS-RSA가 다차원적인 데이터의 정보를 요약하여 제시하며 이를 하나의 분석 데이터로 변환 가능하다는 것을 확인하였다. 이를 통해, IS-RSA가 참가자들의 반응 일관성에 대한 전반적인 정보를 제시할 수 있는 새로운 분석 방법으로의 가능성을 제시하였다.

This study used intersubject representational similarity analysis (IS-RSA) to identify participant-response consistency patterns in previously published data. Additionally, analysis of variance (ANOVA) was utilized to detect any variations in the conditions of each experiment. In each experiment, a combination of ASMR stimulation, visual and auditory stimuli, and time-series emotional video stimulation was employed, and emotional ratings and physiological measurements were collected in accordance with the respective experimental conditions. Every pair of participants' measurements for each stimulus in each experiment was correlated using Pearson correlation coefficient as part of the IS-RSA. The results of study revealed a consistent response pattern among participants exposed to ASMR, visual, and auditory stimuli, in contrast to those exposed to time-series emotional video stimulation. Notably, the ASMR experiment demonstrated a high level of response consistency among participants in positive conditions. Furthermore, both auditory and visual experiments exhibited remarkable consistency in participants' responses, especially when subjected to high arousal levels and visual stimulation. The findings of this study confirm that IS-RSA serves as a valuable tool for summarizing and presenting multidimensional data information. Within the scope of this study, IS-RSA emerged as a reliable method for analyzing multidimensional data, effectively capturing and presenting comprehensive information pertaining to the participants.

키워드

과제정보

이 논문은 한국연구재단 4단계 BK21사업(전북대학교 심리학과)의 지원을 받아 연구되었음(No.4199990714213).

참고문헌

  1. Bach, D. R., Friston, K. J., & Dolan, R. J. (2010). Analytic measures for quantification of arousal from spontaneous skin conductance fluctuations. International Journal of Psychophysiology, 76(1), 52-55. DOI: 10.1016/J.IJPSYCHO.2010.01.011
  2. Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in continuous narrative perception and memory. Neuron, 95(3), 709-721.e5. DOI: 10.1016/J.NEURON.2017.06.041
  3. Barrett, L. F., Quigley, K. S., Bliss-Moreau, E., & Aronson, K. R. (2004). Interoceptive sensitivity and self-reports of emotional experience. Journal of Personality and Social Psychology, 87(5), 684-697. DOI: 10.1037/0022-3514.87.5.684
  4. Bartolomeo, P., Seidel Malkinson, T., & de Vito, S. (2017). Botallo's error, or the quandaries of the universality assumption. Cortex, 86, 176-185. DOI: 10.1016/J.CORTEX.2016.09.026
  5. Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49-59. DOI: 10.1016/0005-7916(94)90063-9
  6. Bradley, M. M., & Lang, P. J. (1999). Fearfulness and affective evaluations of pictures. Motivation and Emotion, 23(1), 1-13. DOI: 10.1023/A:1021375216854
  7. Chen, P. H. A., Jolly, E., Cheong, J. H., & Chang, L. J. (2020). Intersubject representational similarity analysis reveals individual variations in affective experience when watching erotic movies. NeuroImage, 216, 116851. DOI: 10.1016/J.NEUROIMAGE.2020.116851
  8. Dubois, J., & Adolphs, R. (2016). Building a science of individual differences from fMRI. Trends in Cognitive Sciences, 20(6), 425-443. DOI: 10.1016/J.TICS.2016.03.014
  9. Finn, E. S., Corlett, P. R., Chen, G., Bandettini, P. A., & Constable, R. T. (2018). Trait paranoia shapes inter-subject synchrony in brain activity during an ambiguous social narrative. Nature Communications, 9(1), 1-13. DOI: 10.1038/s41467-018-04387-2
  10. Finn, E. S., Glerean, E., Khojandi, A. Y., Nielson, D., Molfese, P. J., Handwerker, D. A., & Bandettini, P. A. (2020). Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging. NeuroImage, 215, 116828. DOI: 10.1016/J.NEUROIMAGE.2020.116828
  11. Gatti, E., Calzolari, E., Maggioni, E., & Obrist, M. (2018). Emotional ratings and skin conductance response to visual, auditory and haptic stimuli. Scientific Data, 5(1), 1-12. DOI: 10.1038/sdata.2018.120
  12. Gibbons, J. D., & Chakraborti, S. (2010). Nonparametric statistical inference. In Nonparametric Statistical Inference. DOI: 10.5005/jp/books/10313_14
  13. Hasson, U., Malach, R., & Heeger, D. J. (2010). Reliability of cortical activity during natural stimulation. Trends in Cognitive Sciences, 14(1), 40-48. DOI: 10.1016/J.TICS.2009.10.011
  14. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of cortical activity during natural vision. Science, 303(5664), 1634-1640. DOI: 10.1126/SCIENCE.1089506/SUPPL_FILE/HASSON.SOM.PDF
  15. Hasson, U., Yang, E., Vallines, I., Heeger, D. J., & Rubin, N. (2008). A hierarchy of temporal receptive windows in human cortex. Journal of Neuroscience, 28(10), 2539-2550. DOI: 10.1523/JNEUROSCI.5487-07.2008
  16. Hatfield, E., Bensman, L., Thornton, P. D., & Rapson, R. L. (2014). New perspectives on emotional contagion: a review of classic and recent research on facial mimicry and contagion. Interpersona: An International Journal on Personal Relationships, 8(2), 159-179. DOI: 10.5964/IJPR. V8I2.162
  17. Hejnar, M. P., Kiehl, K. A., & Calhoun, V. D. (2007). Interparticipant correlations: A model free FMRI analysis technique. Human Brain Mapping, 28(9), 860-867. DOI: 10.1002/HBM.20321
  18. Honey, C. J., Thesen, T., Donner, T. H., Silbert, L. J., Carlson, C. E., Devinsky, O., Doyle, W. K., Rubin, N., Heeger, D. J., & Hasson, U. (2012). Slow cortical dynamics and the accumulation of information over long timescales. Neuron, 76(2), 423-434. DOI: 10.1016/J.NEURON.2012.08.011
  19. Jang, J., & Kim, J. (2023). Consistency between individuals of affective responses for multiple modalities based on behavioral and physiological data. Korean Society for Emotion and Sensibility, 26(1), 43-54. https://doi.org/10.14695/KJSOS.2023.26.1.43
  20. Kauppi, J. P., Jaaskelainen, I. P., Sams, M., & Tohka, J. (2010). Inter-subject correlation of brain hemodynamic responses during watching a movie: Localization in space and frequency. Frontiers in Neuroinformatics, 4(MAR), 5. DOI: 10.3389/FNINF.2010.00005/BIBTEX
  21. Keysers, C., Kaas, J. H., & Gazzola, V. (2010). Somatosensation in social perception. Nature Reviews Neuroscience, 11(6), 417-428. DOI: 10.1038/nrn2833
  22. Khalfa, S., Isabelle, P., Jean-Pierre, B., & Manon, R. (2002). Event-related skin conductance responses to musical emotions in humans. Neuroscience Letters, 328(2), 145-149. DOI: 10.1016/S0304-3940(02)00462-7
  23. Kim, H., & Kim, J. (2022). Affective responses to ASMR using multidimensional scaling and classification. Korean Society for Emotion and Sensibility, 25(3), 47-62. DOI: 10.14695/KJSOS. 2022.25.3.47
  24. Kim, I., Jang, J., Kim, H., & Kim, J. (2022). Measuring consistency of affective responses to ASMR stimuli across individuals using intersubject correlation. The Korean Journal of Cognitive and Biological Psychology, 2022(2), 121-133. DOI: 10.22172/cogbio.2022.34.2.007
  25. Kim, J., & Wedell, D. H. (2016). Comparison of physiological responses to affect eliciting pictures and music. International Journal of Psychophysiology, 101, 9-17. DOI: 10.1016/j.ijpsycho.2015.12.011
  26. Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U. (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 2906-2915. DOI: 10.1523/JNEUROSCI.3684-10.2011
  27. Li, X., Zhu, Y., Vuoriainen, E., Ye, C., & Astikainen, P. (2021). Decreased intersubject synchrony in dynamic valence ratings of sad movie contents in dysphoric individuals. Scientific Reports, 11(1), 1-13. DOI: 10.1038/s41598-021-93825-1
  28. Najafi, M., Kinnison, J., & Pessoa, L. (2017). Dynamics of intersubject brain networks during anxious anticipation. Frontiers in Human Neuroscience, 11, 552. DOI: 10.3389/FNHUM.2017.00552/BIBTEX
  29. Nastase, S. A., Gazzola, V., Hasson, U., & Keysers, C. (2019). Measuring shared responses across subjects using intersubject correlation. Social Cognitive and Affective Neuroscience, 14(6), 669-687. DOI: 10.1093/scan/nsz037
  30. Nummenmaa, L., Lahnakoski, J. M., & Glerean, E. (2018). Sharing the social world via intersubject neural synchronisation. Current Opinion in Psychology, 24, 7-14. DOI: 10.1016/J.COPSYC.2018.02.021
  31. Richards, J. M., & Gross, J. J. (2000). Emotion regulation and memory: The cognitive costs of keeping one's cool. Journal of Personality and Social Psychology, 79(3), 410-424. DOI: 10.1037/0022-3514.79.3.410
  32. Rickard, N. S. (2016). Intense emotional responses to music: A test of the physiological arousal hypothesis. Psychology of Music, 32(4), 371-388. DOI: 10.1177/0305735604046096
  33. Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R., & Zatorre, R. J. (2009). The rewarding aspects of music listening are related to degree of emotional arousal. PLOS ONE, 4(10), e7487. DOI: 10.1371/JOURNAL.PONE.0007487
  34. Satoh, M., Takeda, K., Nagata, K., Hatazawa, J., & Kuzuhara, S. (2001). Activated brain regions in musicians during an ensemble: A PET study. Cognitive Brain Research, 12(1), 101-108. DOI: 10.1016/S0926-6410(01)00044-1
  35. Schmuckler, M. A. (2001). What is ecological validity? a dimensional analysis. Infancy, 2(4), 419-436. DOI: 10.1207/S15327078IN0204_02
  36. Seghier, M. L., & Price, C. J. (2018). Interpreting and utilising intersubject variability in brain function. Trends in Cognitive Sciences, 22(6), 517-530. DOI: 10.1016/J.TICS.2018.03.003
  37. Sharma, K., Castellini, C., van den Broek, E. L., Albu-Schaeffer, A., & Schwenker, F. (2019). A dataset of continuous affect annotations and physiological signals for emotion analysis. Scientific Data, 6(1), 1-13. DOI: 10.1038/s41597-019-0209-0
  38. Shinkareva, S. V., Wang, J., & Wedell, D. H. (2013). Examining similarity structure: Multidimensional scaling and related approaches in neuroimaging. Computational and Mathematical Methods in Medicine, 2013. DOI: 10.1155/2013/796183
  39. Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., & Hasson, U. (2016). Dynamic reconfiguration of the default mode network during narrative comprehension. Nature Communications, 7(1), 12141. DOI: 10.1038/ncomms12141
  40. Sin, M. A., & Yun, J. Y. (2019). Convergent study of the effect of online advertising design using ASMR (Autonomous Sensory Meridian Response). The Korean Society of Science & Art, 37(3), 243-253. https://doi.org/10.17548/ksaf.2019.06.30.243
  41. Singer, T., & Lamm, C. (2009). The social neuroscience of empathy. Annals of the New York Academy of Sciences, 1156, 81-96. DOI: 10.1111/j.1749-6632.2009.04418.x
  42. Sonkusare, S., Breakspear, M., & Guo, C. (2019). Naturalistic stimuli in neuroscience: Critically acclaimed. Trends in Cognitive Sciences, 23(8), 699-714. DOI: 10.1016/J.TICS.2019.05.004
  43. Trost, W., Fruhholz, S., Cochrane, T., Cojan, Y., & Vuilleumier, P. (2015). Temporal dynamics of musical emotions examined through intersubject synchrony of brain activity. Social Cognitive and Affective Neuroscience, 10(12), 1705-1721. DOI: 10.1093/SCAN/NSV060
  44. Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., & van Maanen, L. (2017). Approaches to analysis in model-based cognitive neuroscience. Journal of Mathematical Psychology, 76, 65-79. DOI: 10.1016/J.JMP.2016.01.001
  45. van Baar, J. M., Chang, L. J., & Sanfey, A. G. (2019). The computational and neural substrates of moral strategies in social decision-making. Nature Communications, 10(1), 1-14. DOI: 10.1038/s41467-019-09161-6
  46. van Hedger, S. C., Nusbaum, H. C., Heald, S. L. M., Huang, A., Kotabe, H. P., & Berman, M. G. (2019). The aesthetic preference for nature sounds depends on sound object recognition. Cognitive Science, 43(5), e12734. DOI: 10.1111/COGS.12734
  47. Vicente, R., Wibral, M., Lindner, M., & Pipa, G. (2011). Transfer entropy-a model-free measure of effective connectivity for the neurosciences. Journal of Computational Neuroscience, 30(1), 45-67. DOI: 10.1007/S10827-010-0262-3/FIGURES/8