과제정보
본 논문의 심사과정에서 세세한 검토와 코멘트를 해 주신 익명의 심사위원들께 감사드립니다.
참고문헌
- Al-Sulttani, A.O., M. Al-Mukhtar, A.B. Roomi, A.A. Farooque, K.M. Khedher and Z.M. Yaseen. 2021. Proposition of new ensemble data-intelligence models for surface water quality prediction. IEEE (Institute of Electrical and Electronics Engineers) Access 9: 108527-108541. https://doi.org/10.1109/ACCESS.2021.3100490
- Anderson, D.M., A.D. Cembella and G.M. Hallegraeff. 2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science 3: 143-176. https://doi.org/10.1146/annurev-marine-120308-081121
- Baker, R.E., J.M. Pena, J. Jayamohan and A. Jerusalem. 2018. Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biology Letters 14: 20170660.
- Bertone, E., M.A. Burford and D.P. Hamilton. 2018. Fluorescence probes for real-time remote cyanobacteria monitoring: a review of challenges and opportunities. Water Research 141: 152-162. https://doi.org/10.1016/j.watres.2018.05.001
- Bruder, S., M. Babbar-Sebens, L. Tedesco and E. Soyeux. 2014. Use of fuzzy logic models for prediction of taste and odor compounds in algal bloom-affected inland water bodies. Environmental Monitoring Assessment 186: 1525-1545. https://doi.org/10.1007/s10661-013-3471-1
- Cawley, G.C. and N.L. Talbot. 2010. On over-fitting in model selection and subsequent selection bias in performance evaluation. Journal Machine Learning Research 11: 2079-2107.
- Chen, C., J.C. Huang, Q.W. Chen, J.Y. Zhang, Z.J. Li and Y.Q. Lin. 2019. Assimilating multi-source data into a three-dimensional hydro-ecological dynamics model using Ensemble Kalman Filter. Environmental Modelling and Software 117: 188-199. https://doi.org/10.1016/j.envsoft.2019.03.028
- Chen, Q.W. and A.E. Mynett. 2003. Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake. Ecological Modelling 162: 55-67. https://doi.org/10.1016/S0304-3800(02)00389-7
- Dodds, W.K., W.W. Bouska, J.L. Eitzmann, T.J. Pilger, K.L. Pitts, A.J. Riley, J.T. Schloesser and D.J. Thornbrugh. 2009. Eutrophication of U.S. freshwaters: Analysis of potential economic damages. Environmental Science and Technology 43: 12-19. https://doi.org/10.1021/es801217q
- Fornarelli, R., S. Galelli, A. Castelletti, J.P. Antenucci and C.L. Marti. 2013. An empirical modeling approach to predict and understand phytoplankton dynamics in a reservoir affected by interbasin water transfers. Water Resources Research 49: 3626-3641. https://doi.org/10.1002/wrcr.20268
- Gardner, R.C. 2000. Correlation, causation, motivation, and second language acquisition. Canadian Psychology/Psychologie Canadienne 41: 10-24. https://doi.org/10.1037/h0086854
- Gelman, A. and J. Hill. 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge, England. 648p.
- Guven, B. and A. Howard. 2006. A review and classification of the existing models of cyanobacteria. Progress in Physical Geography: Earth and Environment 30: 1-24. https://doi.org/10.1191/0309133306pp464ra
- Hamilton, D.P., K.R. O'Brien, M.A. Burford, J.D. Brookes and C.G. McBride. 2010. Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquatic Sciences 72: 295-307. https://doi.org/10.1007/s00027-010-0131-1
- Harada, M., T. Tominaga, K. Hiramatsu and A. Marui. 2013. Real-time prediction of chlorophyll-a time series in a eutrophic agricultural reservoir in a coastal zone using recurrent neural networks with periodic chaos neurons. Irrigation and Drainage 62: 36-43. https://doi.org/10.1002/ird.1757
- Harris, T.D. and J.L. Graham. 2017. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset. Lake and Reservoir Management 33: 32-48. https://doi.org/10.1080/10402381.2016.1263694
- Hwang, S.J., K. Kim, C. Park, W. Seo, B.G. Choi, H.S. Eum, M.H. Park, H.R. Noh, Y.B. Sim and J.K. Shin. 2016. Hydro-meteorological effects on water quality variability in Paldang Reservoir, confluent area of the South-Han River-North-Han River-Gyeongan Stream, Korea. Korean Journal of Ecology and Environment 49: 354-374. https://doi.org/10.11614/KSL.2016.49.4.354
- Hwang, S.J., Y.B. Sim, B.G. Choi, K. Kim, C. Park, W. Seo, M.H. Park, S.W. Lee and J.K. Shin. 2017. Rainfall and hydrological comparative analysis of water quality variability in Euiam Reservoir, the North-Han River, Korea. Korean Journal of Ecology and Environment 50: 29-45. https://doi.org/10.11614/KSL.2017.50.1.029
- Kim, S.H., J.H. Park and B. Kim. 2021. Prediction of cyanobacteria harmful algal blooms in reservoir using machine learning and deep learning. Journal of Korea Water Resources Association 54: 1167-1181. https://doi.org/10.3741/JKWRA.2021.54.S-1.1167
- Kratzert, F., D. Klotz, M. Herrnegger, A.K. Sampson, S. Hochreiter and G.S. Nearing. 2019. Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resources Research 55: 11344-11354. https://doi.org/10.1029/2019WR026065
- LeCun, Y., Y. Bengio and G. Hinton. 2015. Deep learning. Nature 521: 436-444. https://doi.org/10.1038/nature14539
- Lee, E., E.H. Na and K. Kim. 2012. The establishment of water quality forecasting system for preemptive water quality management. Rural Resources 54: 50-55.
- Liu, Y., Z. Wang, H. Guo, S. Yu and H. Sheng. 2013. Modelling the effect of weather conditions on cyanobacterial bloom outbreaks in Lake Dianchi: a rough decision-adjusted logistic regression model. Environmental Modeling and Assessment 18: 199-207. https://doi.org/10.1007/s10666-012-9333-3
- Luo, Y., K. Yang, Z.Y. Yu, J.Y. Chen, Y.F. Xu, X.L. Zhou and Y. Yang. 2017. Dynamic monitoring and prediction of Dianchi Lake cyanobacteria outbreaks in the context of rapid urbanization. Environmental Science and Pollution Research 24: 5335-5348. https://doi.org/10.1007/s11356-016-8155-2
- Maier, H.R. and G.C. Dandy. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software 15: 101-124. https://doi.org/10.1016/S1364-8152(99)00007-9
- Millie, D.F., G.R. Weckman, G.L. Fahnenstiel, H.J. Carrick, E. Ardjmand, W.A. Young II, M.J. Sayers and R.A. Shuchman. 2014. Using artificial intelligence for cyanoHAB niche modeling: discovery and visualization of Microcystis-environmental associations within western Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 71: 1642-1654. https://doi.org/10.1139/cjfas-2013-0654
- Ministry of Environment-National Institute of Environmental Research (MOE-NIER). 2020. A Manual of Algal Alert System. NIER-GP2020-019. Incheon, Republic of Korea.
- Mitrovic, S.M., L. Hardwick and F. Dorani. 2010. Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia. Journal of Plankton Research 33: 229-241. https://doi.org/10.1093/plankt/fbq094
- Moe, S.J., S. Haande and R.M. Couture. 2016. Climate change, cyanobacteria blooms and ecological status of lakes: a Bayesian network approach. Ecological Modelling 337: 330-347. https://doi.org/10.1016/j.ecolmodel.2016.07.004
- Mooij, W.M., D. Trolle, E. Jeppesen, G. Arhonditsis, P.V. Belolipetsky, D.B.R. Chitamwebwa, A.G. Degermendzhy, D,L. DeAngelis, L.N.D. Domis, A.S. Downing, J.A. Elliott, C.R. Fragoso, U. Gaedke, S.N. Genova, R.D. Gulati, L. Hakanson, D.P. Hamilton, M.R. Hipsey, J. 't Hoen, S. Hulsmann, F.H. Los, V. Makler-Pick, T. Petzoldt, I.G. Prokopkin, K. Rinke, S.A. Schep, K. Tominaga, A.A. van Dam, E.H. van Nes, S.A. Wells and J.H. Janse. 2010. Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquatic Ecology 44: 633-667. https://doi.org/10.1007/s10452-010-9339-3
- Nichols, S., R. Norris, W. Maher and M. Thoms. 2006. Ecological effects of serial impoundment on the Cotter River, Australia. Hydrobiologia 572: 255-273. https://doi.org/10.1007/s10750-005-0995-6
- O'Hara, R.B. and D.J. Kotze. 2010. Do not log-transform count data. Methods in Ecology and Evolution 1: 118-122. https://doi.org/10.1111/j.2041-210X.2010.00021.x
- Office of Science and Technology Policy (OSTP). 2016. Harmful Algal Blooms and Hypoxia Comprehensive Research Plan and Action Strategy: An Interagency Report. National Science and Technology Council Subcommittee on Ocean Science and Technology, USA. 94p.
- Ostfeld, A., A. Tubaltzev, M. Rom, L. Kronaveter, T. Zohary and G. Gal. 2015. Coupled data-driven evolutionary algorithm for toxic cyanobacteria (blue-green algae) forecasting in Lake Kinneret. Journal of Water Resources Planning and Management 141: 04014069-13
- Paerl, H.W. 2014. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted World. Life 4: 988-1012. https://doi.org/10.3390/life4040988
- Paerl, H.W. and D.F. Millie. 1996. Physiological ecology of toxic aquatic cyanobacteria. Phycologia 35: 160-167. https://doi.org/10.2216/i0031-8884-35-6S-160.1
- Paerl, H.W. and J. Huisman. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27-37. https://doi.org/10.1111/j.1758-2229.2008.00004.x
- Paerl, H.W. and T.G. Otten. 2013. Harmful cyanobacterial blooms: causes, consequences and controls. Microbial Ecology 65: 995-1010. https://doi.org/10.1007/s00248-012-0159-y
- Page, T., P.J. Smith, K.J. Beven, I.D. Jones, J.A. Elliott, S.C. Maberly, E.B. Mackay, M. De Ville and H. Feuchtmayr. 2018. Adaptive forecasting of phytoplankton communities. Water Research 134: 74-85. https://doi.org/10.1016/j.watres.2018.01.046
- Peters, D.P., K.M. Havstad, J. Cushing, C. Tweedie, O. Fuenres and N. Villanueva-Rosales. 2014. Harnessing the power of big data: Infusing the scientific method with machine learning to transform ecology. Ecosphere 5: 1-15. https://doi.org/10.1890/ES13-00359.1
- Qin, B., J. Deng, K. Shi, J. Wang, J. Brookes, J. Zhou, Y. Zhang, G. Zhu, H.W. Pearl and L. Wu. 2021. Extreme climate anomalies enhancing cyanobacterial blooms in eutrophic Lake Taihu, China. Water Resources Research 57: e2020WR029371.
- Qin, B., W. Li, G. Zhu, Y. Zhang, T. Wu and G. Gao. 2015. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). Journal of Hazardous Materials 287: 356-363. https://doi.org/10.1016/j.jhazmat.2015.01.047
- Raps, S., K. Wyman, H.W. Siegelman and P.G. Falkowski. 1983. Adaptation of the cyanobacterium Microcystis aeruginosa to light intensity. Plant Physiology 72: 829-832. https://doi.org/10.1104/pp.72.3.829
- Recknagel, F., M. French, P. Harkonen and K.I. Yabunaka. 1997. Artificial neural network approach for modelling and prediction of algal blooms. Ecological Modelling 96: 11-28. https://doi.org/10.1016/S0304-3800(96)00049-X
- Recknagel, F., P.T. Orr and H.Q. Cao. 2014. Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation. Harmful Algae 31: 26-34. https://doi.org/10.1016/j.hal.2013.09.004
- Recknagel, F., P.T. Orr, M. Bartkow, A. Swanepoel and H. Cao. 2017. Early warning of limit-exceeding concentrations of cyanobacteria and cyanotoxins in drinking water reservoirs by inferential modelling. Harmful Algae 69: 18-27. https://doi.org/10.1016/j.hal.2017.09.003
- Recknagel, F., T. Fukushima, T. Hanazato, N. Takamura and H. Wilson. 1998. Modelling and prediction of phyto- and zooplankton dynamics in Lake Kasumigaura by artificial neural networks. Lakes and Reservoirs: Research and Management 3: 123-133. https://doi.org/10.1111/j.1440-1770.1998.tb00039.x
- Reynolds, C.S. and A.E. Walsby. 1975. Water-blooms. Biological Reviews 50: 437-481. https://doi.org/10.1111/j.1469-185X.1975.tb01060.x
- Reynolds, C.S., R.L. Oliver and A.E. Walsby. 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine and Freshwater Research 21: 379-390. https://doi.org/10.1080/00288330.1987.9516234
- Rousso, B.Z., E. Bertone, R. Stewart and D.P. Hamilton. 2020. A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes. Water Research 182: 115959.
- Schindler, D.W. 2012. The dilemma of controlling cultural eutrophication of lakes. Proceedings of The Royal Society B 279: 4322-4333. https://doi.org/10.1098/rspb.2012.1032
- Schuwirth, N., F. Borgwardt, S. Domisch, M. Friedrichs, M. Kattwinkel, D. Kneis, M. Kuemmerlen, S.D. Langhans, J. Martinez-Lopez and P. Vermeiren. 2019. How to make ecological models useful for environmental management. Ecological Modelling 411: 108784.
- Sheng, H., H. Liu, C. Wang, H. Guo, Y. Liu and Y. Yang. 2012. Analysis of cyanobacteria bloom in the Waihai part of Dianchi lake, China. Ecological Informatics 10: 37-48. https://doi.org/10.1016/j.ecoinf.2012.03.007
- Shin, J.K. and Y. Park. 2018. Spatiotemporal and longitudinal variability of hydro-meteorology, basic water quality and dominant algal assemblages in the eight weir pools of regulated river (Nakdong). Korean Journal of Ecology and Environment 51: 268-286. https://doi.org/10.11614/KSL.2018.51.4.268
- Shin, J.K., B.G. Kang and S.J. Hwang. 2016. Water-blooms (green-tide) dynamics of algae alert system and rainfall-hydrological effects in Daecheong Reservoir, Korea. Korean Journal of Ecology and Environment 49: 153-175. https://doi.org/10.11614/KSL.2016.49.3.153
- Shin, J.K., Y. Park, N.Y. Kim and S.J. Hwang. 2022. Downstream transport of geosmin based on harmful cyanobacterial outbreak upstream in a reservoir cascade. International Journal of Environmnetal Research and Public Health 19: 9294.
- Sibanda, M., O. Mutanga, V.G. Chimonyo, A.D. Clulow, C. Shoko, D. Mazvimavi, T. Dube and T. Mabhaudhi. 2021. Application of drone technologies in surface water resources monitoring and assessment: A systematic review of progress, challenges, and opportunities in the global south. Drones 5: 84.
- Summers, E.J. and J.L. Ryder. 2023. A critical review of operational strategies for the management of harmful algal blooms (HABs) in inland reservoirs. Journal of Environmental Management 330: 117141.
- Teles, L.O., E. Pereira, M. Saker and V. Vasconcelos. 2008. Virtual experimentation on cyanobacterial bloom dynamics and its application to a temperate reservoir (Torrao, Portugal). Lakes and Reservoirs: Research and Management 13: 135-143. https://doi.org/10.1111/j.1440-1770.2008.00362.x
- Tromas, N., N. Fortin, L. Bedrani, Y. Terrat, P. Cardoso, D. Bird, C.W. Greer and B.J. Shapiro. 2017. Characterising and predicting cyanobacterial blooms in an 8-year amplicon sequencing time course. The ISME (International Society for Microbial Ecology) Journal 11: 1746-1763. https://doi.org/10.1038/ismej.2017.58
- van Eck, N.J. and L. Waltman. 2007. Bibliometric mapping of the computational intelligence field. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15: 625-645. https://doi.org/10.1142/S0218488507004911
- van Eck, N.J. and L.Waltman. 2009. VOSviewer: A Computer Program for Bibliometric Mapping. Technical Report ERS2009-005-LIS, Erasmus University Rotterdam, Erasmus Research Institute of Management. Rotterdam, The Netherlands. 19p. http://hdl.handle.net/1765/14841
- van Eck, N.J. and L. Waltman. 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84: 523-538. https://doi.org/10.1007/s11192-009-0146-3
- van Eck, N.J., L.R.Waltman, E.C.M. Noyons and R.K. Buter. 2010a. Automatic term identification for bibliometric mapping. Scientometrics 82: 581-596. https://doi.org/10.1007/s11192-010-0173-0
- van Eck, N.J., L.Waltman, R. Dekker and J. van den Berg. 2010b. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology 61: 2405-2416. https://doi.org/10.1002/asi.21421
- Waaijer, C.J.F., C.A. van Bochove and N.J. van Eck. 2011. On the map: Nature and Science editorials. Scientometrics 86: 99-112. https://doi.org/10.1007/s11192-010-0205-9
- Waltman, L., N.J. van Eck and E.C.M. Noyons. 2010. A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics 4: 629-635. https://doi.org/10.1016/j.joi.2010.07.002
- Wang, H., R. Zhu, J. Zhang, L.Y. Ni, H. Shen and P. Xie. 2018. A novel and convenient method for early warning of algal cell density by chlorophyll fluorescence parameters and its application in a highland lake. Frontiers in Plant Science 9: 869.
- Watanabe, M.F., K. Harada, W.W. Carmichael and H. Fujiki. 1996. Toxic Microcystis. CRC Press, Boca Raton, London, U.K. 262p.
- Wei, B., N. Sugiura and T. Maekawa. 2001. Use of artificial neural network in the prediction of algal blooms. Water Research 35: 2022-2028. https://doi.org/10.1016/S0043-1354(00)00464-4
- Welk, A., F. Recknagel, H. Cao, W.S. Chan and A. Talib. 2008. Rule-based agents for forecasting algal population dynamics in freshwater lakes discovered by hybrid evolutionary algorithms. Ecological Informatics 3: 46-54. https://doi.org/10.1016/j.ecoinf.2007.12.002
- Wilkinson, G.M., S.R. Carpenter, J.J. Cole, M.L. Pace, R.D. Batt, C.D. Buelo and J.T. Kurtzweil. 2018. Early warning signals precede cyanobacterial blooms in multiple whole-lake experiments. Ecological Monographs 88: 188-203. https://doi.org/10.1002/ecm.1286
- World Health Organization (WHO). 2011. Management of Cyanobacteria in Drinking-water Supplies: Information for Regulators and Water Suppliers. Technical Brief WHO/FWC/WSH/15.03. 11p.
- Xiao, X., J. He, H. Huang, T.R. Miller, G. Christakos, E.S. Reichwaldt, A. Ghadouani, S. Lin, X. Xu and J. Shi. 2017. A novel single-parameter approach for forecasting algal blooms. Water Research 108: 222-231. https://doi.org/10.1016/j.watres.2016.10.076
- Yabunaka, K., M. Hosomi and A. Murakami. 1997. Novel application of a backpropagation artificial neural network model formulated to predict algal bloom. Water Science and Technology 36: 89-97. https://doi.org/10.2166/wst.1997.0172