DOI QR코드

DOI QR Code

Optical Triangular Waveform Generation with Alterable Symmetry Index Based on a Cascaded SD-MZM and Polarization Beam Splitter-combiner Architecture

  • 투고 : 2023.05.17
  • 심사 : 2023.08.25
  • 발행 : 2023.10.25

초록

A scheme is proposed to generate triangular waveforms with alterable symmetry. The key component is a cascaded single-drive Mach-Zehnder modulator (SD-MZM) and optical polarization beam splitter-combiner architecture. In this triangular waveform generator, the bias-induced phase shift, modulation index and controllable delay difference are changeable. To generate triangular waveform signals with different symmetry indexes, different combinations of these variables are selected. Compared with the previous schemes, this generator just contains one SD-MZM and the balanced photodetector (BPD) is not needed, which means the costs and energy consumption are significantly reduced. The operation principle of this triangular waveform generator has been theoretically analyzed, and the corresponding simulation is conducted. Based on the theoretical and simulated results, some experiments are demonstrated to prove the validity of the scheme. The triangular waveform signals with a symmetry factor range of 20-80% are generated. Both experiment and theory prove the feasibility of this method.

키워드

과제정보

The National Natural Science Foundation of China (Grant No. 61751102, 61965004); National Key Research and Development Program of China (Grant No. 2021YFB2206302); Introduction talent research start-up fund of Guizhou University [Guida Ren Ji He Zi (2018-14)].

참고문헌

  1. J. Yao, "Microwave photonics," J. Lightw. Technol. 27, 314-335 (2009). https://doi.org/10.1109/JLT.2008.2009551
  2. J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," in Proc. International Topical Meeting on Microwave Photonics IEEE (Awaji, Japan, Nov. 5-8, 2003), pp. 93-96.
  3. Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, and L. Shang, "Microwave generation with photonic frequency sextupling based on cascaded modulators," IEEE Photon. Technol. Lett. 26, 1199-1202 (2014). https://doi.org/10.1109/LPT.2014.2318772
  4. Y. Gao, A. Wen, H. Zheng, D. Liang, and L. Lin, "Photonic microwave waveform generation based on phase modulation and tunable dispersion," Opt. Express 24, 12524-12533 (2016). https://doi.org/10.1364/OE.24.012524
  5. Y. H. Jung, H. Zhang, S. J. Cho, and Z. Ma, "Flexible and stretchable microwave microelectronic devices and circuits," IEEE Trans. Electron. Devices 64, 1881-1893 (2017). https://doi.org/10.1109/TED.2016.2646361
  6. A. I. Latkin, S. Boscolo, and S. K. Turitsyn, "Passive nonlinear pulse shaping in normally dispersive fiber," IEEE J. Quantum Electron. 44, 1196-1203 (2008).
  7. H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, "Generation of triangular pulses in normally dispersive fibre," in The European Conference on Lasers and Electro-Optics 2009 (Optica Publishing Group, 2009), paper CD_P32.
  8. J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and S. Yao, "Photonic generation of triangular-shaped pulses based on frequency-to-time conversion," Opt. Lett. 36, 1458-1460 (2011). https://doi.org/10.1364/OL.36.001458
  9. Y. He, Y. Jiang, Y. J. Zi, G. F. Bai, J. Tian, Y. Xia, X. Y. Zhang, R. Dong, and H. Luo, "Photonic microwave waveforms generation based on two cascaded single-drive Mach-Zehnder modulators," Opt. Express 26, 7829-7841 (2018). https://doi.org/10.1364/OE.26.007829
  10. W. Li, W. T. Wang, and N. H. Zhu, "Photonic generation of radio-frequency waveforms based on dual-parallel Mach- Zehnder modulator," IEEE Photonics J. 6, 5500608 (2014).
  11. J. Li, X. Zhang, B. Hraimel, T. Ning, L. Pei, and K. Wu, "Performance analysis of a photonic-assisted periodic triangular-shaped pulses generator," J. Lightw. Technol. 30, 1617-1624 (2012). https://doi.org/10.1109/JLT.2012.2187880
  12. F. Zhang, X. Ge, and S. Pan, "Triangular pulse generation using a dual-parallel Mach-Zehnder modulator driven by a single-frequency radio frequency signal," Opt. Lett. 38, 4491-4493 (2013). https://doi.org/10.1364/OL.38.004491
  13. J. Li, T. Ning, L. Pei, W. Jian, H. You, H. Chen, and C. Zhang, "Photonic-assisted periodic triangular-shaped pulses generation with tunable repetition rate," IEEE Photonics Technol. Lett. 25, 952-954 (2013). https://doi.org/10.1109/LPT.2013.2253454
  14. R. S. Bhamber, A. I. Latkin, S. Boscolo, S. K. Turitsyn, "All optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses," in Proc. 34th European Conference on Optical Communication IEEE (Brussels, Belgium, Sep. 21-25, 2008).
  15. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, "Doubling of optical signals using triangular pulses," J. Opt. Soc. Am. B 26, 1492-1496 (2009). https://doi.org/10.1364/JOSAB.26.001492
  16. J. Li, T. Ning, L. Pei, and J. Zheng, "Photonic generation of triangular-shaped waveform signal with adjustable symmetrical coefficient," J. Mod. Opt. 66, 1457-1465 (2019). https://doi.org/10.1080/09500340.2019.1631971
  17. C. Y. Wang, T. G. Ning, J. Li, L. Pei, J. J. Zheng, Y. J. Li, and B. Ai, "Generation of variable-symmetric triangular waveforms based on dual polarization modulation," Acta Phys. Sin. 70, 224211 (2021).
  18. J. Li, C. Wang, L. Pei, T. Ning, J. Zheng, R. He, and Y. Li, "Generation of optical triangular-shaped pulse train with variable symmetry by using an I/Q modulator," Opt. Lett. 45, 1411-1414 (2020). https://doi.org/10.1364/OL.386910
  19. M. X. Yan, J. Li, L. Pei, T. G. Ning, J. J. Zheng, J. S. Wang, and C. Y. Wang, "Study on function waveform generator based on birefringence of polarization-maintaining fiber," Acta Opt. Sin. 43, 0211001 (2023).
  20. G. F. Bai, L. Hu, Y. Jiang, J. Tian, Y.-J. Zi, and T.-W. Wu, "Versatile photonic microwave waveforms generation using a dual-parallel Mach-Zehnder modulator without other dispersive elements," Opt. Commun. 396, 134-140 (2017). https://doi.org/10.1016/j.optcom.2017.03.050