DOI QR코드

DOI QR Code

해양기상부표의 센서 데이터 품질 향상을 위한 프레임워크 개발

Development of a Framework for Improvement of Sensor Data Quality from Weather Buoys

  • 이주용 (강원대학교 경영회계학부) ;
  • 이재영 (부산대학교 산업공학과) ;
  • 이지우 (부산대학교 산업공학과) ;
  • 신상문 (동아대학교 산업경영공학과) ;
  • 장준혁 (선박해양플랜트연구소 해사디지털서비스연구센터) ;
  • 한준희 (부산대학교 산업공학과)
  • Ju-Yong Lee (Division of Business Administration & Accounting, Kangwon National University) ;
  • Jae-Young Lee (Department of Industrial Engineering, Pusan National University) ;
  • Jiwoo Lee (Department of Industrial Engineering, Pusan National University) ;
  • Sangmun Shin (Department of Industrial & Management Engineering, Dong-A University) ;
  • Jun-hyuk Jang (Maritime Digital Transformation Research Center, Korea Research Institute of Ships & Ocean Engineering) ;
  • Jun-Hee Han (Department of Industrial Engineering, Pusan National University)
  • 투고 : 2023.09.15
  • 심사 : 2023.09.18
  • 발행 : 2023.09.30

초록

In this study, we focus on the improvement of data quality transmitted from a weather buoy that guides a route of ships. The buoy has an Internet-of-Thing (IoT) including sensors to collect meteorological data and the buoy's status, and it also has a wireless communication device to send them to the central database in a ground control center and ships nearby. The time interval of data collected by the sensor is irregular, and fault data is often detected. Therefore, this study provides a framework to improve data quality using machine learning models. The normal data pattern is trained by machine learning models, and the trained models detect the fault data from the collected data set of the sensor and adjust them. For determining fault data, interquartile range (IQR) removes the value outside the outlier, and an NGBoost algorithm removes the data above the upper bound and below the lower bound. The removed data is interpolated using NGBoost or long-short term memory (LSTM) algorithm. The performance of the suggested process is evaluated by actual weather buoy data from Korea to improve the quality of 'AIR_TEMPERATURE' data by using other data from the same buoy. The performance of our proposed framework has been validated through computational experiments based on real-world data, confirming its suitability for practical applications in real-world scenarios.

키워드

과제정보

This research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20210650). This work was also supported by "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 202106540003)

참고문헌

  1. Abdel-Aal, R.E., Hourly temperature forecasting using abductive networks, Engineering Applications of Artificial Intelligence, 2004, Vol. 17, No. 5, pp. 543-556. https://doi.org/10.1016/j.engappai.2004.04.002
  2. Barnett, V. and Lewis, T., Outliers in statistical data, Wiley New York, 1994, pp. 7-33.
  3. Bidlot, J.R., Holmes, D.J., Wittmann, P.A., Lalbeharry, R., and Chen, H.S., Intercomparison of the performance of operational ocean wave forecasting systems with buoy data, Weather and Forecasting, 2002, Vol.17. No.2, pp. 287-310. https://doi.org/10.1175/1520-0434(2002)017<0287:IOTPOO>2.0.CO;2
  4. Chakraborty, D. and Elzarka, H., Advanced machine learning techniques for building performance simulation: a comparative analysis, Journal of Building Performance Simulation, 2019, Vol. 12, No. 2, pp. 193-207. https://doi.org/10.1080/19401493.2018.1498538
  5. Cifuentes, J., Marulanda, G., Bello, A., and Reneses, J., Air temperature forecasting using machine learning techniques: A review, Energies, 2020, Vol. 13, No. 16, pp. 4215.
  6. Dai, X. and Gao, Z., From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis, IEEE Transactions on Industrial Informatics, 2013, Vol.9, No.4, pp. 2226-2238. https://doi.org/10.1109/TII.2013.2243743
  7. Duan, T., Anand, A., Ding, D.Y., Thai, K.K., Basu, S., Ng, A., and Schuler, A., Ngboost: Natural gradient boosting for probabilistic prediction, In International Conference on Machine Learning, 2020, pp. 2690-2700.
  8. Ebuchi, N., Graber, H.C., and Caruso, M.J., Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data, Journal of Atmospheric and Oceanic Technology, 2002, Vol.19, No.12, pp. 2049-2062. https://doi.org/10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2
  9. Fang, Z., Crimier, N., Scanu, L., Midelet, A., Alyafi, A., and Delinchant, B., Multi-zone indoor temperature prediction with LSTM-based sequence to sequence model, Energy and Buildings, 2021, Vol. 245, pp. 111053.
  10. Ge, Z., Song, Z., and Gao, F. Review of recent research on data-based process monitoring, Industrial & Engineering Chemistry Research, 2013, Vol. 52, No.10, pp. 3543-3562 https://doi.org/10.1021/ie302069q
  11. Heidemann, J., Ye, W., Wills, J., Syed, A., and Li, Y., Research challenges and applications for underwater sensor networking, In: IEEE Wireless Communications and Networking Conference 2006, WCNC 2006. IEEE, 2006. pp. 228-235.
  12. Hochreiter, S. and Schmidhuber, J., Long short-term memory, Neural Computation, 1997. Vol. 9, No. 8, pp. 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  13. Jeong, S., Park, I., Kim, H.S., Song, C.H., and Kim, H.K., Temperature prediction based on bidirectional long short-term memory and convolutional neural network combining observed and numerical forecast data, Sensors, 2021, Vol. 21, No.3, pp. 941.
  14. Khan, M.I. and Maity, R., Hybrid deep learning approach for multi-step-ahead prediction for daily maximum temperature and heatwaves, Theoretical and Applied Climatology, 2022. Vol. 149, No. 3-4, pp. 945-963. https://doi.org/10.1007/s00704-022-04103-7
  15. Leonard, N.E., Paley, D.A., Lekien, F., Sepulchre, R., Fratantoni, D.M., and Davis, R.E., Collective motion, sensor networks, and ocean sampling, Proceedings of the IEEE, 2007, Vol. 95, No. 1, pp. 48-74. https://doi.org/10.1109/JPROC.2006.887295
  16. Li, D., Wang, Y., Wang, J., Wang, C., and Duan, Y. Recent advances in sensor fault diagnosis: A review, Sensors and Actuators A: Physical, 2020, Vol. 309, pp. 111990.
  17. Liu, J., Zhang, T., Gou, Y., Wang, X., Li, B., and Guan, W., Convolutional LSTM networks for seawater temperature prediction, 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), 2019, IEEE.
  18. Qin, S.J., Survey on data-driven industrial process monitoring and diagnosis, Annual Reviews in Control, 2012, Vol. 36, No. 2, pp. 220-234. https://doi.org/10.1016/j.arcontrol.2012.09.004
  19. Reynolds, R.W., A real-time global sea surface temperature analysis, Journal of Climate, 1988, Vol.1, No.3, pp. 75-87. https://doi.org/10.1175/1520-0442(1988)001<0075:ARTGSS>2.0.CO;2
  20. Venkatesan, R., Ramesh, K., Muthiah, M.A., Thirumurugan, K., and Atmanand, M.A., Analysis of drift characteristic in conductivity and temperature sensors used in Moored buoy system, Ocean Engineering, 2019, Vol. 171, pp. 151-156. https://doi.org/10.1016/j.oceaneng.2018.10.033
  21. Wang, R., Lu, S., and Li, Q. Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings, Sustainable Cities and Society, 2019, Vol. 49, pp. 101623.
  22. Xiang, L., Wang, P., Yang, X., Hu, A., and Su, H. Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism, Measurement, 2021, Vol. 175, pp. 109094.
  23. Yin, S., Wang, G., and Karimi, H.R., Data-driven design of robust fault detection system for wind turbines, Mechatronics, 2014, Vol. 24, No.4, pp. 298-306. https://doi.org/10.1016/j.mechatronics.2013.11.009
  24. Zamora-Martinez, F., Romeu, P., Botella-Rocamora, P., and Pardo, J., On-line learning of indoor temperature forecasting models towards energy efficiency, Energy and Buildings, 2014, Vol. 83, pp. 162-172. https://doi.org/10.1016/j.enbuild.2014.04.034
  25. Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B. and Si, Y., A data-driven design for fault detection of wind turbines using random forests and XGboost, IEEE Access, 2018, Vol. 6, pp. 21020-21031. https://doi.org/10.1109/ACCESS.2018.2818678