Acknowledgement
This work was supported by 2022 Hannam University Research Fund.
References
- Y. C. Hwang. (2022). Extraction and classification of malicious code feature information for intelligent detection model. Industrial Convergence Research (formerly Journal of the Korean Society of Industrial Management), 20(5), 61-68. DOI : 10.22678/JIC.2022.20.5.061
- Y. C. Hwang, & H. J. Mun. (2022). Design of Intelligent Intrusion Context-aware Inference System for Active Detection and Response Journal of Convergence for Information Technology, 12(4), 126-132. DOI : 10.22156/CS4SMB.2022.12.04.126
- H. S. Kim, & S. J. Lee. (2023). Comparative analysis of effective feature extraction techniques for machine learning-based ransomware attack detection. Journal of Convergence Security, 23(1), 117-123.
- K. B. Lee, J. Y. Ok, & K. Lim. (2018). Signature extraction and selection method for ransomware dynamic analysis. The actual journal of computing of the Society for Information Science, 24(2), 99-104. DOI : 10.5626/KTCP.2018.24.2.99
- K. W. Moon, J. H. Lee. (2022). Recent Ransomware Trends and Development Direction. Journal of Information Security Society, 32(3), 33-39.
- K.W. Moon, J. H. Lee (2018). Analysis of latest ransomware features. Journal of the Korean Society of Communications and Communications, 43(4), 715-722. DOI : 10.7840/kics.2018.43.4.715
- H. S. Kim, I. S. Kim. (2019). Malicious code distribution site characteristics analysis and countermeasures study. Journal of the Information Security Society, 29(1), 93-103.
- D. J. Jeon, & D. G. Park. (2018). Real-time malicious file detection technique using machine learning technique. Journal of the Korean Society of Information Technology, 16(3), 101-113.
- Y. S. Lee, J. W. Lee, N. Y. Rae, S. J. Jung, K Seong, & W. Y So. (2018, June). Malicious code detection method trend analysis using deep learning. In Proceedings of KIIT Conference (pp. 166-169).
- IBM Security X-Force Threat Intelligence Index (accessed January 6, 2023), https://www.ibm.com/reports/threat-intelligence
- H. M. Nam, J. S. Jang, & Y. H. Jeon. (2016). Research on analysis of ransomware attack techniques and countermeasures. Proceedings of the Korea Internet Information Society Conference, 17(1), 283-284.
- H. Choi, & Y. Cho (2017). Research on Minimizing the Damage from Ransomware Attack by Case Study. Journal of Korea Society of Digital Industry and Information Management, 13(1), 103-111. DOI : 10.17662/KSDIM.2017.13.1.103
- Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28. https://doi.org/10.1016/j.compeleceng.2013.11.024
- K. H. Lee, M. C. Hwang, Y. I. Koo, D. Y. Hyun, & Y. Y. Yoo. (2022). A study on a ransomware detection model using opcode and API clustering and similarity analysis. Korean Information Processing Society Conference Proceedings, 29(1), 179-182.
- J. Y. Byeon, D. H. Kim, H. C. Kim, & S. Y. Choi, (2021). RFA: Recursive Feature Addition Algorithm for Machine Learning-Based Malware Classification. Journal of the Korea Society of Computer and Information, 26(2), 61-68. DOI : 10.9708/JKSCI.2021.26.02.061
- Murtagh, F., & Contreras, P. (2017). Algorithms for hierarchical clustering: an overview, II. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(6), e1219.