DOI QR코드

DOI QR Code

Biochemical and structural comparisons of non-nucleoside reverse transcriptase inhibitors against feline and human immunodeficiency viruses

  • Received : 2023.01.01
  • Accepted : 2023.07.12
  • Published : 2023.09.30

Abstract

Background: Feline immunodeficiency virus (FIV) causes an acquired immunodeficiency-like syndrome in cats. FIV is latent. No effective treatment has been developed for treatment the infected cats. The first and second generations non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV treatment, nevirapine (NVP) and efavirenz (EFV), and rilpivirine (RPV), were used to investigate the potential of NNRTIs for treatment of FIV infection. Objective: This study aims to use experimental and in silico approaches to investigate the potential of NNRTIs, NVP, EFV, and RPV, for inhibition of FIV reverse transcriptase (FIV-RT). Methods: The FIV-RT and human immunodeficiency virus reverse transcriptase (HIV-RT) were expressed and purified using chromatography approaches. The purified proteins were used to determine the IC50 values with NVP, EFV, and RPV. Surface plasmon resonance (SPR) analysis was used to calculate the binding affinities of NNRTIs to HIV-RT and FIV-RT. The molecular docking and molecular dynamic simulations were used to demonstrate the mechanism of FIV-RT and HIV-RT with first and second generation NNRTI complexes. Results: The IC50 values of NNRTIs NVP, EFV, and RPV against FIV-RT were in comparable ranges to HIV-RT. The SPR analysis showed that NVP, EFV, and RPV could bind to both enzymes. Computational calculation also supports that these NNRTIs can bind with both FIV-RT and HIV-RT. Conclusions: Our results suggest the first and second generation NNRTIs (NVP, EFV, and RPV) could inhibit both FIV-RT and HIV-RT.

Keywords

Acknowledgement

This research was supported by the Office of the Ministry of Higher Education, Science, Research and Innovation; and the Thailand Science Research and Innovation through the Kasetsart University Reinventing University Program 2022 and the Kasetsart University Research and Development Institute (KURDI), Bangkok, Thailand (FF (KU)17.64).

References

  1. Sprissler F, Jongwattanapisan P, Luengyosluechakul S, Pusoonthornthum R, Reese S, Bergmann M, et al. Prevalence and risk factors of feline immunodeficiency virus and feline leukemia virus infection in healthy cats in Thailand. Front Vet Sci. 2022;8:764217.
  2. Hartmann K. Feline immunodeficiency virus infection: an overview. Vet J. 1998;155(2):123-137. https://doi.org/10.1016/S1090-0233(98)80008-7
  3. Gomez-Lucia E, Collado VM, Miro G, Martin S, Benitez L, Domenech A. Clinical and hematological follow-up of long-term oral therapy with type-I interferon in cats naturally infected with feline leukemia virus or feline immunodeficiency virus. Animals (Basel). 2020;10(9):1464.
  4. Uhl EW, Heaton-Jones TG, Pu R, Yamamoto JK. FIV vaccine development and its importance to veterinary and human medicine: a review FIV vaccine 2002 update and review. Vet Immunol Immunopathol. 2002;90(3-4):113-132. https://doi.org/10.1016/S0165-2427(02)00227-1
  5. Westman ME, Malik R, Hall E, Harris M, Norris JM. The protective rate of the feline immunodeficiency virus vaccine: an Australian field study. Vaccine. 2016;34(39):4752-4758. https://doi.org/10.1016/j.vaccine.2016.06.060
  6. Stickney A, Ghosh S, Cave NJ, Dunowska M. Lack of protection against feline immunodeficiency virus infection among domestic cats in New Zealand vaccinated with the Fel-O-Vax® FIV vaccine. Vet Microbiol. 2020;250:108865.
  7. Galilee M, Alian A. The structure of FIV reverse transcriptase and its implications for non-nucleoside inhibitor resistance. PLoS Pathog. 2018;14(1):e1006849.
  8. Hartmann K, Donath A, Beer B, Egberink HF, Horzinek MC, Lutz H, et al. Use of two virustatica (AZT, PMEA) in the treatment of FIV and of FeLV seropositive cats with clinical symptoms. Vet Immunol Immunopathol. 1992;35(1-2):167-175. https://doi.org/10.1016/0165-2427(92)90129-E
  9. Smerdon SJ, Jager J, Wang J, Kohlstaedt LA, Chirino AJ, Friedman JM, et al. Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1994;91(9):3911-3915. https://doi.org/10.1073/pnas.91.9.3911
  10. Das K, Bauman JD, Clark AD Jr, Frenkel YV, Lewi PJ, Shatkin AJ, et al. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. Proc Natl Acad Sci U S A. 2008;105(5):1466-1471. https://doi.org/10.1073/pnas.0711209105
  11. Tarasova O, Poroikov V, Veselovsky A. Molecular docking studies of HIV-1 resistance to reverse transcriptase inhibitors: mini-review. Molecules. 2018;23(5):1233.
  12. Panigrahi D, Mishra A, Sahu SK. Rational in silico drug design of HIV-RT inhibitors through G-QSAR and molecular docking study of 4-arylthio and 4-aryloxy-3-iodopyridine-2 (1-H)-one derivative. Beni-Suef Univ J Basic Appl Sci. 2020;9(1):1-18. https://doi.org/10.1186/s43088-019-0027-7
  13. Saparpakorn P, Chimprasit A, Jantarat T, Hannongbua S. Insight investigation of rilpivirine and compounds from mushrooms as feline immunodeficiency virus reverse transcriptase inhibitors using molecular dynamics simulations and quantum chemical calculations. Mol Simul. 2022;48(6):463-476. https://doi.org/10.1080/08927022.2021.2025236
  14. Seetaha S, Ratanabunyong S, Tabtimmai L, Choowongkomon K, Rattanasrisomporn J, Choengpanya K. Anti-feline immunodeficiency virus reverse transcriptase properties of some medicinal and edible mushrooms. Vet World. 2020;13(9):1798-1806. https://doi.org/10.14202/vetworld.2020.1798-1806
  15. Seetaha S, Yagi-Utsumi M, Yamaguchi T, Ishii K, Hannongbua S, Choowongkomon K, et al. Application of site-specific spin labeling for NMR detecting inhibitor-induced conformational change of HIV-1 reverse transcriptase. ChemMedChem. 2016;11(4):363-366. https://doi.org/10.1002/cmdc.201500554
  16. Cole J, Nissink J. Protein-ligand docking and virtual screening with GOLD. In: Shoichet B, Alvarez J, editors. Virtual Screening in Drug Discovery. Boca Raton: Taylor & Francis CRC Press; 2005. 
  17. Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19-25. https://doi.org/10.1016/j.softx.2015.06.001
  18. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010;31(4):671-690. https://doi.org/10.1002/jcc.21367
  19. Yu W, He X, Vanommeslaeghe K, MacKerell AD Jr. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem. 2012;33(31):2451-2468. https://doi.org/10.1002/jcc.23067
  20. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101.
  21. Andersen HC. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys. 1980;72(4):2384-2393. https://doi.org/10.1063/1.439486
  22. Nose S, Klein M. Constant pressure molecular dynamics for molecular systems. Mol Phys. 1983;50(5):1055-1076. https://doi.org/10.1080/00268978300102851
  23. Darden T, York D, Pedersen L. Particle mesh Ewald: an N.log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089-10092. https://doi.org/10.1063/1.464397
  24. Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463-1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  25. Kumari R, Kumar R, Lynn A; Open Source Drug Discovery Consortium. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951-1962. https://doi.org/10.1021/ci500020m
  26. Grob PM, Wu JC, Cohen KA, Ingraham RH, Shih CK, Hargrave KD, et al. Nonnucleoside inhibitors of HIV-1 reverse transcriptase: nevirapine as a prototype drug. AIDS Res Hum Retroviruses. 1992;8(2):145-152. https://doi.org/10.1089/aid.1992.8.145
  27. Ranise A, Spallarossa A, Cesarini S, Bondavalli F, Schenone S, Bruno O, et al. Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives. J Med Chem. 2005;48(11):3858-3873. https://doi.org/10.1021/jm049252r
  28. Gray WT, Frey KM, Laskey SB, Mislak AC, Spasov KA, Lee WG, et al. Potent inhibitors active against HIV reverse transcriptase with K101P, a mutation conferring rilpivirine resistance. ACS Med Chem Lett. 2015;6(10):1075-1079.  https://doi.org/10.1021/acsmedchemlett.5b00254
  29. Limjiasahapong S, Tuchinda P, Reutrakul V, Pohmakotr M, Akkarawongsapat R, Limthongkul J, et al. Anti-HIV-1 activities and chemical constituents from leaves and twigs of Santisukia pagetii (Bignoniaceae). Nat Prod Commun. 2018;13(11):1449-1452.
  30. Huang B, Chen W, Zhao T, Li Z, Jiang X, Ginex T, et al. Exploiting the tolerant region I of the non-nucleoside reverse transcriptase inhibitor (NNRTI) binding pocket: discovery of potent diarylpyrimidine-typed HIV-1 NNRTIs against wild-type and E138K mutant virus with significantly improved water solubility and favorable safety profiles. J Med Chem. 2019;62(4):2083-2098. https://doi.org/10.1021/acs.jmedchem.8b01729
  31. Auwerx J, Esnouf R, De Clercq E, Balzarini J. Susceptibility of feline immunodeficiency virus/human immunodeficiency virus type 1 reverse transcriptase chimeras to non-nucleoside RT inhibitors. Mol Pharmacol. 2004;65(1):244-251. https://doi.org/10.1124/mol.65.1.244
  32. Jiao L, Li H, Li L, Zhuang D, Liu Y, Bao Z, et al. Impact of novel resistance profiles in HIV-1 reverse transcriptase on phenotypic resistance to NVP. AIDS Res Treat. 2012;2012:637263.
  33. Huang Y, Li Z, Xing H, Jiao Y, Ouyang Y, Liao L, et al. Identification of the critical sites of NNRTI-resistance in reverse transcriptase of HIV-1 CRF_BC strains. PLoS One. 2014;9(4):e93804.
  34. Sass S, Stocklein WF, Klevesath A, Hurpin J, Menger M, Hille C. Binding affinity data of DNA aptamers for therapeutic anthracyclines from microscale thermophoresis and surface plasmon resonance spectroscopy. Analyst (Lond). 2019;144(20):6064-6073. https://doi.org/10.1039/C9AN01247H
  35. Scala MC, Agamennone M, Pietrantoni A, Di Sarno V, Bertamino A, Superti F, et al. Discovery of a novel tetrapeptide against influenza A virus: rational design, synthesis, bioactivity evaluation and computational studies. Pharmaceuticals (Basel). 2021;14(10):959.
  36. Sharaf NG, Ishima R, Gronenborn AM. Conformational plasticity of the NNRTI-binding pocket in HIV-1 reverse transcriptase: a fluorine nuclear magnetic resonance study. Biochemistry. 2016;55(28):3864-3873. https://doi.org/10.1021/acs.biochem.6b00113
  37. Ren J, Milton J, Weaver KL, Short SA, Stuart DI, Stammers DK. Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Structure. 2000;8(10):1089-1094. https://doi.org/10.1016/S0969-2126(00)00513-X