Acknowledgement
This research was supported by the Office of the Ministry of Higher Education, Science, Research and Innovation; and the Thailand Science Research and Innovation through the Kasetsart University Reinventing University Program 2022 and the Kasetsart University Research and Development Institute (KURDI), Bangkok, Thailand (FF (KU)17.64).
References
- Sprissler F, Jongwattanapisan P, Luengyosluechakul S, Pusoonthornthum R, Reese S, Bergmann M, et al. Prevalence and risk factors of feline immunodeficiency virus and feline leukemia virus infection in healthy cats in Thailand. Front Vet Sci. 2022;8:764217.
- Hartmann K. Feline immunodeficiency virus infection: an overview. Vet J. 1998;155(2):123-137. https://doi.org/10.1016/S1090-0233(98)80008-7
- Gomez-Lucia E, Collado VM, Miro G, Martin S, Benitez L, Domenech A. Clinical and hematological follow-up of long-term oral therapy with type-I interferon in cats naturally infected with feline leukemia virus or feline immunodeficiency virus. Animals (Basel). 2020;10(9):1464.
- Uhl EW, Heaton-Jones TG, Pu R, Yamamoto JK. FIV vaccine development and its importance to veterinary and human medicine: a review FIV vaccine 2002 update and review. Vet Immunol Immunopathol. 2002;90(3-4):113-132. https://doi.org/10.1016/S0165-2427(02)00227-1
- Westman ME, Malik R, Hall E, Harris M, Norris JM. The protective rate of the feline immunodeficiency virus vaccine: an Australian field study. Vaccine. 2016;34(39):4752-4758. https://doi.org/10.1016/j.vaccine.2016.06.060
- Stickney A, Ghosh S, Cave NJ, Dunowska M. Lack of protection against feline immunodeficiency virus infection among domestic cats in New Zealand vaccinated with the Fel-O-Vax® FIV vaccine. Vet Microbiol. 2020;250:108865.
- Galilee M, Alian A. The structure of FIV reverse transcriptase and its implications for non-nucleoside inhibitor resistance. PLoS Pathog. 2018;14(1):e1006849.
- Hartmann K, Donath A, Beer B, Egberink HF, Horzinek MC, Lutz H, et al. Use of two virustatica (AZT, PMEA) in the treatment of FIV and of FeLV seropositive cats with clinical symptoms. Vet Immunol Immunopathol. 1992;35(1-2):167-175. https://doi.org/10.1016/0165-2427(92)90129-E
- Smerdon SJ, Jager J, Wang J, Kohlstaedt LA, Chirino AJ, Friedman JM, et al. Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1994;91(9):3911-3915. https://doi.org/10.1073/pnas.91.9.3911
- Das K, Bauman JD, Clark AD Jr, Frenkel YV, Lewi PJ, Shatkin AJ, et al. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. Proc Natl Acad Sci U S A. 2008;105(5):1466-1471. https://doi.org/10.1073/pnas.0711209105
- Tarasova O, Poroikov V, Veselovsky A. Molecular docking studies of HIV-1 resistance to reverse transcriptase inhibitors: mini-review. Molecules. 2018;23(5):1233.
- Panigrahi D, Mishra A, Sahu SK. Rational in silico drug design of HIV-RT inhibitors through G-QSAR and molecular docking study of 4-arylthio and 4-aryloxy-3-iodopyridine-2 (1-H)-one derivative. Beni-Suef Univ J Basic Appl Sci. 2020;9(1):1-18. https://doi.org/10.1186/s43088-019-0027-7
- Saparpakorn P, Chimprasit A, Jantarat T, Hannongbua S. Insight investigation of rilpivirine and compounds from mushrooms as feline immunodeficiency virus reverse transcriptase inhibitors using molecular dynamics simulations and quantum chemical calculations. Mol Simul. 2022;48(6):463-476. https://doi.org/10.1080/08927022.2021.2025236
- Seetaha S, Ratanabunyong S, Tabtimmai L, Choowongkomon K, Rattanasrisomporn J, Choengpanya K. Anti-feline immunodeficiency virus reverse transcriptase properties of some medicinal and edible mushrooms. Vet World. 2020;13(9):1798-1806. https://doi.org/10.14202/vetworld.2020.1798-1806
- Seetaha S, Yagi-Utsumi M, Yamaguchi T, Ishii K, Hannongbua S, Choowongkomon K, et al. Application of site-specific spin labeling for NMR detecting inhibitor-induced conformational change of HIV-1 reverse transcriptase. ChemMedChem. 2016;11(4):363-366. https://doi.org/10.1002/cmdc.201500554
- Cole J, Nissink J. Protein-ligand docking and virtual screening with GOLD. In: Shoichet B, Alvarez J, editors. Virtual Screening in Drug Discovery. Boca Raton: Taylor & Francis CRC Press; 2005.
- Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19-25. https://doi.org/10.1016/j.softx.2015.06.001
- Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010;31(4):671-690. https://doi.org/10.1002/jcc.21367
- Yu W, He X, Vanommeslaeghe K, MacKerell AD Jr. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem. 2012;33(31):2451-2468. https://doi.org/10.1002/jcc.23067
- Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101.
- Andersen HC. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys. 1980;72(4):2384-2393. https://doi.org/10.1063/1.439486
- Nose S, Klein M. Constant pressure molecular dynamics for molecular systems. Mol Phys. 1983;50(5):1055-1076. https://doi.org/10.1080/00268978300102851
- Darden T, York D, Pedersen L. Particle mesh Ewald: an N.log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089-10092. https://doi.org/10.1063/1.464397
- Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463-1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
- Kumari R, Kumar R, Lynn A; Open Source Drug Discovery Consortium. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951-1962. https://doi.org/10.1021/ci500020m
- Grob PM, Wu JC, Cohen KA, Ingraham RH, Shih CK, Hargrave KD, et al. Nonnucleoside inhibitors of HIV-1 reverse transcriptase: nevirapine as a prototype drug. AIDS Res Hum Retroviruses. 1992;8(2):145-152. https://doi.org/10.1089/aid.1992.8.145
- Ranise A, Spallarossa A, Cesarini S, Bondavalli F, Schenone S, Bruno O, et al. Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives. J Med Chem. 2005;48(11):3858-3873. https://doi.org/10.1021/jm049252r
- Gray WT, Frey KM, Laskey SB, Mislak AC, Spasov KA, Lee WG, et al. Potent inhibitors active against HIV reverse transcriptase with K101P, a mutation conferring rilpivirine resistance. ACS Med Chem Lett. 2015;6(10):1075-1079. https://doi.org/10.1021/acsmedchemlett.5b00254
- Limjiasahapong S, Tuchinda P, Reutrakul V, Pohmakotr M, Akkarawongsapat R, Limthongkul J, et al. Anti-HIV-1 activities and chemical constituents from leaves and twigs of Santisukia pagetii (Bignoniaceae). Nat Prod Commun. 2018;13(11):1449-1452. https://doi.org/10.1177/1934578X1801301109
- Huang B, Chen W, Zhao T, Li Z, Jiang X, Ginex T, et al. Exploiting the tolerant region I of the non-nucleoside reverse transcriptase inhibitor (NNRTI) binding pocket: discovery of potent diarylpyrimidine-typed HIV-1 NNRTIs against wild-type and E138K mutant virus with significantly improved water solubility and favorable safety profiles. J Med Chem. 2019;62(4):2083-2098. https://doi.org/10.1021/acs.jmedchem.8b01729
- Auwerx J, Esnouf R, De Clercq E, Balzarini J. Susceptibility of feline immunodeficiency virus/human immunodeficiency virus type 1 reverse transcriptase chimeras to non-nucleoside RT inhibitors. Mol Pharmacol. 2004;65(1):244-251. https://doi.org/10.1124/mol.65.1.244
- Jiao L, Li H, Li L, Zhuang D, Liu Y, Bao Z, et al. Impact of novel resistance profiles in HIV-1 reverse transcriptase on phenotypic resistance to NVP. AIDS Res Treat. 2012;2012:637263.
- Huang Y, Li Z, Xing H, Jiao Y, Ouyang Y, Liao L, et al. Identification of the critical sites of NNRTI-resistance in reverse transcriptase of HIV-1 CRF_BC strains. PLoS One. 2014;9(4):e93804.
- Sass S, Stocklein WF, Klevesath A, Hurpin J, Menger M, Hille C. Binding affinity data of DNA aptamers for therapeutic anthracyclines from microscale thermophoresis and surface plasmon resonance spectroscopy. Analyst (Lond). 2019;144(20):6064-6073. https://doi.org/10.1039/C9AN01247H
- Scala MC, Agamennone M, Pietrantoni A, Di Sarno V, Bertamino A, Superti F, et al. Discovery of a novel tetrapeptide against influenza A virus: rational design, synthesis, bioactivity evaluation and computational studies. Pharmaceuticals (Basel). 2021;14(10):959.
- Sharaf NG, Ishima R, Gronenborn AM. Conformational plasticity of the NNRTI-binding pocket in HIV-1 reverse transcriptase: a fluorine nuclear magnetic resonance study. Biochemistry. 2016;55(28):3864-3873. https://doi.org/10.1021/acs.biochem.6b00113
- Ren J, Milton J, Weaver KL, Short SA, Stuart DI, Stammers DK. Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Structure. 2000;8(10):1089-1094. https://doi.org/10.1016/S0969-2126(00)00513-X