DOI QR코드

DOI QR Code

Antioxidant and Anti-Inflammatory Activity of Brachythecium populeum Extract

Brachythecium populeum 추출물의 항산화 및 항염효과

  • Sang-Nam PARK (Department of Clinical Laboratory Science, Kyung Dong University) ;
  • Ok Hee LEE (Department of Health Management, Kyung Dong University)
  • Received : 2023.07.11
  • Accepted : 2023.08.11
  • Published : 2023.09.30

Abstract

Antioxidant, cytotoxic, and anti-inflammatory assays were conducted to determine the commercial viability of Brachythecium populeum. The antioxidant activity was assessed by performing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. This was followed by the quantification of polyphenols and flavonoids. Results of the DPPH and ABTS assay showed that antioxidant activities of the ethanol extract of B. populeum were 3.7 and 3.6 times higher than water extract, respectively. The polyphenol concentration was also determined to be 4.1 times higher and the flavonoid concentration was 5.3 times higher than the water extract. The cell-based experiments, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay and nitric oxide assay, were performed using RAW 264.7. Results of the MTT assay revealed that both extracts exerted no cytotoxicity on the cells (based on 80% viability). In the nitric oxide (NO) production inhibition experiment, inhibition of NO production was determined to be 15.42% more when exposed to ethanol extract as compared to water extract. Furthermore, the ethanol extract exerted greater inhibition of inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α production (9.39%, 11.87%, and 14.49% more, respectively) when compared to the water extract. Due to the good antioxidant activity and potential for inhibiting NO and inflammatory cytokine production, B. populeum ethanol extracts are prospective sources of anti-inflammatory compounds.

Brachythecium populeum 의 상업적 사용 가능성을 확인하기 위하여 항산화능 실험과 세포 독성, 항염능 실험을 실시하였다. 폴리페놀과 플라보노이드 농도 측정에서는 70% 에탄올 추출이 증류수 추출에 비해 높은 농도를 나타내어, 70% 에탄올이 추출물의 유효성분 및 추출 수율의 측면에서 가장 적합한 추출용매란 것을 확인하였다. DPPH, ABTS에서는 증류수 추출물에 비해 70% 에탄올 추출물의 항산화능이 높은 것을 확인하였다. 이는 B. populeum 유효성분의 극성에 따른 것으로 생각된다. 항염능 실험에서는 세포 독성과 항염능을 알아보았다. 세포독성의 경우 양 추출물 모두낮은 세포독성을 보였으며, 염증 전달 물질인 NO 생성 억제능의 경우 70% 에탄올 추출물이 증류수 추출물에 비해 통계적으로 유의한 수준의 항염능 증가를 보였다. 염증성 사이토카인인 IL-1β, IL-6, TNF-α의 농도를 측정한 결과 100 ㎍/mL 농도에서 각각 9.39%, 11.87%, 14.49%의 억제효과를 나타내었다. 이를 통해 B. populeum의 70% 에탄올이 염증 억제를 위한 물질로서 사용 가능함을 보였다.

Keywords

References

  1. Kim TN. Elderly obesity: is it harmful or beneficial? J Obes Metab Syndr. 2018;27:84-92. https://doi.org/10.7570/jomes.2018.27.2.84
  2. Ko MS. A study on research trends of age-friendly using text network analysis: focusing on 「The Korean Journal of Health Service Management」 (2007-2018). Korean Soc Health Serv Manag. 2019;13:19-31. https://doi.org/10.12811/kshsm.2019.13.4.019
  3. Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22:75-95. https://doi.org/10.1038/s41580-020-00314-w
  4. Scudellari M. To stay young, kill zombie cells. Nature. 2017;550:448-450. https://doi.org/10.1038/550448a
  5. von Kobbe C. Targeting senescent cells: approaches, opportunities, challenges. Aging (Albany NY). 2019;11:12844-12861. https://doi.org/10.18632/aging.102557
  6. Pole A, Dimri M, Dimri GP. Oxidative stress, cellular senescence and ageing. AIMS Mol Sci. 2016;3:300-324. https://doi.org/10.3934/molsci.2016.3.300
  7. Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127. https://doi.org/10.1155/2016/3565127
  8. Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993; 215:213-219. https://doi.org/10.1111/j.1432-1033.1993.tb18025.x
  9. Berneburg M, Plettenberg H, Krutmann J. Photoaging of human skin. Photodermatol Photoimmunol Photomed. 2000;16:239-244. https://doi.org/10.1034/j.1600-0781.2000.160601.x
  10. Pilkington SM, Bulfone-Paus S, Griffiths CEM, Watson REB. Inflammaging and the skin. J Invest Dermatol. 2021;141(4S):1087-1095. https://doi.org/10.1016/j.jid.2020.11.006
  11. Seo JY, Chung JH. Thermal aging: a new concept of skin aging. J Dermatol Sci Suppl. 2006;2:S13-S22. https://doi.org/10.1016/j.descs.2006.08.002
  12. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576-590. https://doi.org/10.1038/s41574-018-0059-4
  13. Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 2016;64:111-126. https://doi.org/10.1007/s00005-015-0377-3
  14. Herwald H, Egesten A. Tackling the pros and cons of inflammation. J Innate Immun. 2019;11:445-446. https://doi.org/10.1159/000502353
  15. Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell. 2014;54:281-288. https://doi.org/10.1016/j.molcel.2014.03.030
  16. Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057-1073. https://doi.org/10.2147/jir.s275595
  17. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871-882. https://doi.org/10.1016/j.cell.2010.02.029
  18. Evans JA, Johnson EJ. The role of phytonutrients in skin health. Nutrients. 2010;2:903-928. https://doi.org/10.3390/nu2080903
  19. Yim EY, Choi HS. Assessment on the biological activities of ethanol extract from Marchantia polymorpha L. Korean J Med Crop Sci. 2021;29:187-193. https://doi.org/10.7783/KJMCS.2021.29.3.187
  20. National Institute of Biological Resources Biodiversity on the Korean Peninsula [Internet]. National Institute of Biological Resources [cited 2023 November 7]. Available from: https://species.nibr.go.kr/home/mainHome.do?contCd=009002&ktsn=120000054214
  21. Bum HM, Park SJ, Bakalin VA, Choi B, Sim SH, Hyun CW, et al. Bryophyte flora of Taebaeksan Mountain National Park in Korea. Korean J Plant Taxon. 2020;50:262-278. https://doi.org/10.11110/kjpt.2020.50.3.262
  22. Angalao LA, Doctor JGP, Banwa T. Antimicrobial activities of Azolla filiculoides Lam. (Pteridophyte) and Brachythecium buchananii (Hook.) Jaeg. (Bryophyte). Int J Sci Clin Lab. 2012;2:71-81.
  23. Greeshma GM, Manoj GS, Murugan K. Insight into pharmaceutical importance of bryophytes. Kong Res J. 2017;4:84-88. https://doi.org/10.26524/krj208
  24. Singh M, Rawat AK, Govindarajan R. Antimicrobial activity of some Indian mosses. Fitoterapia. 2007;78:156-158. https://doi.org/10.1016/j.fitote.2006.10.008
  25. Larrauri JA, Ruperez P, Saura-Calixto F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J Agric Food Chem. 1997;45:1390-1393. https://doi.org/10.1021/jf960282f
  26. Antony A, Farid M. Effect of temperatures on polyphenols during extraction. Appl Sci. 2022;12:2107. https://doi.org/10.3390/app12042107
  27. Aboud SA, Altemimi AB, R S Al-HiIphy A, Yi-Chen L, Cacciola F. A comprehensive review on infrared heating applications in food processing. Molecules. 2019;24:4125. https://doi.org/10.3390/molecules24224125
  28. Leal PF, Maia NB, Carmello QAC, Catharino RR, Eberlin MN, Meireles MAA. Sweet basil (Ocimum basilicum) extracts obtained by supercritical fluid extraction (SFE): global yields, chemical composition, antioxidant activity, and estimation of the cost of manufacturing. Food Bioprocess Technol. 2008;1:326-338. https://doi.org/10.1007/s11947-007-0030-1
  29. Pekal A, Pyrzynska K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Methods. 2014;7: 1776-1782. https://doi.org/10.1007/s12161-014-9814-x
  30. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-1200. https://doi.org/10.1038/1811199a0
  31. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
  32. Chen Z, Bertin R, Froldi G. EC50 estimation of antioxidant activity in DPPH.assay using several statistical programs. Food Chem. 2013;138:414-420. https://doi.org/10.1016/j.foodchem.2012.11.001
  33. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, et al. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal. 2014;22:296-302. https://doi.org/10.1016/j.jfda.2013.11.001
  34. Stalikas CD. Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci. 2007;30:3268-3295. https://doi.org/10.1002/jssc.200700261
  35. Zielinski H, Kozlowska H. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem. 2000;48:2008-2016. https://doi.org/10.1021/jf990619o
  36. Smolinska-Kondla D, Zych M, Ramos P, Waclawek S, Stebel A. Antioxidant potential of various extracts from 5 common European mosses and its correlation with phenolic compounds. Herba Pol. 2022;68:54-68. https://doi.org/10.2478/hepo-2022-0014
  37. Sabovljevic MS, Sabovljevic AD, Ikram NKK, Peramuna A, Bae H, Simonsen HT. Bryophytes - an emerging source for herbal remedies and chemical production. Plant Genet Resour. 2016;14:314-327. https://doi.org/10.1017/S1479262116000320
  38. Singh A, Yau YF, Leung KS, El-Nezami H, Lee JC. Interaction of polyphenols as antioxidant and anti-inflammatory compounds in brain-liver-gut axis. Antioxidants (Basel). 2020;9:669. https://doi.org/10.3390/antiox9080669
  39. Yang CY, Pan CC, Tseng CH, Yen FL. Antioxidant, anti-inflammation and antiaging activities of Artocarpus altilis methanolic extract on urban particulate matter-induced HaCaT keratinocytes damage. Antioxidants (Basel). 2022;11:2304. https://doi.org/10.3390/antiox11112304
  40. Kim SY, Hong M, Kim TH, Lee KY, Park SJ, Hong SH, et al. Anti-inflammatory effect of liverwort (Marchantia polymorpha L.) and Racomitrium moss (Racomitrium canescens (Hedw.) Brid.) growing in Korea. Plants (Basel). 2021;10:2075. https://doi.org/10.3390/plants10102075
  41. Marques RV, Sestito SE, Bourgaud F, Miguel S, Cailotto F, Reboul P, et al. Anti-inflammatory activity of bryophytes extracts in LPS-stimulated RAW264.7 murine macrophages. Molecules. 2022;27:1940. https://doi.org/10.3390/molecules27061940