References
- Kim TN. Elderly obesity: is it harmful or beneficial? J Obes Metab Syndr. 2018;27:84-92. https://doi.org/10.7570/jomes.2018.27.2.84
- Ko MS. A study on research trends of age-friendly using text network analysis: focusing on 「The Korean Journal of Health Service Management」 (2007-2018). Korean Soc Health Serv Manag. 2019;13:19-31. https://doi.org/10.12811/kshsm.2019.13.4.019
- Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22:75-95. https://doi.org/10.1038/s41580-020-00314-w
- Scudellari M. To stay young, kill zombie cells. Nature. 2017;550:448-450. https://doi.org/10.1038/550448a
- von Kobbe C. Targeting senescent cells: approaches, opportunities, challenges. Aging (Albany NY). 2019;11:12844-12861. https://doi.org/10.18632/aging.102557
- Pole A, Dimri M, Dimri GP. Oxidative stress, cellular senescence and ageing. AIMS Mol Sci. 2016;3:300-324. https://doi.org/10.3934/molsci.2016.3.300
- Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127. https://doi.org/10.1155/2016/3565127
- Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993; 215:213-219. https://doi.org/10.1111/j.1432-1033.1993.tb18025.x
- Berneburg M, Plettenberg H, Krutmann J. Photoaging of human skin. Photodermatol Photoimmunol Photomed. 2000;16:239-244. https://doi.org/10.1034/j.1600-0781.2000.160601.x
- Pilkington SM, Bulfone-Paus S, Griffiths CEM, Watson REB. Inflammaging and the skin. J Invest Dermatol. 2021;141(4S):1087-1095. https://doi.org/10.1016/j.jid.2020.11.006
- Seo JY, Chung JH. Thermal aging: a new concept of skin aging. J Dermatol Sci Suppl. 2006;2:S13-S22. https://doi.org/10.1016/j.descs.2006.08.002
- Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576-590. https://doi.org/10.1038/s41574-018-0059-4
- Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 2016;64:111-126. https://doi.org/10.1007/s00005-015-0377-3
- Herwald H, Egesten A. Tackling the pros and cons of inflammation. J Innate Immun. 2019;11:445-446. https://doi.org/10.1159/000502353
- Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell. 2014;54:281-288. https://doi.org/10.1016/j.molcel.2014.03.030
- Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057-1073. https://doi.org/10.2147/jir.s275595
- Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871-882. https://doi.org/10.1016/j.cell.2010.02.029
- Evans JA, Johnson EJ. The role of phytonutrients in skin health. Nutrients. 2010;2:903-928. https://doi.org/10.3390/nu2080903
- Yim EY, Choi HS. Assessment on the biological activities of ethanol extract from Marchantia polymorpha L. Korean J Med Crop Sci. 2021;29:187-193. https://doi.org/10.7783/KJMCS.2021.29.3.187
- National Institute of Biological Resources Biodiversity on the Korean Peninsula [Internet]. National Institute of Biological Resources [cited 2023 November 7]. Available from: https://species.nibr.go.kr/home/mainHome.do?contCd=009002&ktsn=120000054214
- Bum HM, Park SJ, Bakalin VA, Choi B, Sim SH, Hyun CW, et al. Bryophyte flora of Taebaeksan Mountain National Park in Korea. Korean J Plant Taxon. 2020;50:262-278. https://doi.org/10.11110/kjpt.2020.50.3.262
- Angalao LA, Doctor JGP, Banwa T. Antimicrobial activities of Azolla filiculoides Lam. (Pteridophyte) and Brachythecium buchananii (Hook.) Jaeg. (Bryophyte). Int J Sci Clin Lab. 2012;2:71-81.
- Greeshma GM, Manoj GS, Murugan K. Insight into pharmaceutical importance of bryophytes. Kong Res J. 2017;4:84-88. https://doi.org/10.26524/krj208
- Singh M, Rawat AK, Govindarajan R. Antimicrobial activity of some Indian mosses. Fitoterapia. 2007;78:156-158. https://doi.org/10.1016/j.fitote.2006.10.008
- Larrauri JA, Ruperez P, Saura-Calixto F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J Agric Food Chem. 1997;45:1390-1393. https://doi.org/10.1021/jf960282f
- Antony A, Farid M. Effect of temperatures on polyphenols during extraction. Appl Sci. 2022;12:2107. https://doi.org/10.3390/app12042107
- Aboud SA, Altemimi AB, R S Al-HiIphy A, Yi-Chen L, Cacciola F. A comprehensive review on infrared heating applications in food processing. Molecules. 2019;24:4125. https://doi.org/10.3390/molecules24224125
- Leal PF, Maia NB, Carmello QAC, Catharino RR, Eberlin MN, Meireles MAA. Sweet basil (Ocimum basilicum) extracts obtained by supercritical fluid extraction (SFE): global yields, chemical composition, antioxidant activity, and estimation of the cost of manufacturing. Food Bioprocess Technol. 2008;1:326-338. https://doi.org/10.1007/s11947-007-0030-1
- Pekal A, Pyrzynska K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Methods. 2014;7: 1776-1782. https://doi.org/10.1007/s12161-014-9814-x
- Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-1200. https://doi.org/10.1038/1811199a0
- Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
- Chen Z, Bertin R, Froldi G. EC50 estimation of antioxidant activity in DPPH.assay using several statistical programs. Food Chem. 2013;138:414-420. https://doi.org/10.1016/j.foodchem.2012.11.001
- Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, et al. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal. 2014;22:296-302. https://doi.org/10.1016/j.jfda.2013.11.001
- Stalikas CD. Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci. 2007;30:3268-3295. https://doi.org/10.1002/jssc.200700261
- Zielinski H, Kozlowska H. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem. 2000;48:2008-2016. https://doi.org/10.1021/jf990619o
- Smolinska-Kondla D, Zych M, Ramos P, Waclawek S, Stebel A. Antioxidant potential of various extracts from 5 common European mosses and its correlation with phenolic compounds. Herba Pol. 2022;68:54-68. https://doi.org/10.2478/hepo-2022-0014
- Sabovljevic MS, Sabovljevic AD, Ikram NKK, Peramuna A, Bae H, Simonsen HT. Bryophytes - an emerging source for herbal remedies and chemical production. Plant Genet Resour. 2016;14:314-327. https://doi.org/10.1017/S1479262116000320
- Singh A, Yau YF, Leung KS, El-Nezami H, Lee JC. Interaction of polyphenols as antioxidant and anti-inflammatory compounds in brain-liver-gut axis. Antioxidants (Basel). 2020;9:669. https://doi.org/10.3390/antiox9080669
- Yang CY, Pan CC, Tseng CH, Yen FL. Antioxidant, anti-inflammation and antiaging activities of Artocarpus altilis methanolic extract on urban particulate matter-induced HaCaT keratinocytes damage. Antioxidants (Basel). 2022;11:2304. https://doi.org/10.3390/antiox11112304
- Kim SY, Hong M, Kim TH, Lee KY, Park SJ, Hong SH, et al. Anti-inflammatory effect of liverwort (Marchantia polymorpha L.) and Racomitrium moss (Racomitrium canescens (Hedw.) Brid.) growing in Korea. Plants (Basel). 2021;10:2075. https://doi.org/10.3390/plants10102075
- Marques RV, Sestito SE, Bourgaud F, Miguel S, Cailotto F, Reboul P, et al. Anti-inflammatory activity of bryophytes extracts in LPS-stimulated RAW264.7 murine macrophages. Molecules. 2022;27:1940. https://doi.org/10.3390/molecules27061940