References
- Alkhrausi, H. (2012). Generalizability theory: An analysis of variance approach to measurement problems in educational assessment. Journal of Studies in Education, 2(1), 184-196. https://doi.org/10.5296/jse.v2i1.1227
- Blum, W. (1985). Anwendungsorentierter Mathematikunterricht in der didaktischen Diskussion [Application-oriented mathematics teaching in the didactical discussion]. Mathematische Semesterberichte, 32(2), 195-232.
- Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds), Trends in teaching and learning of mathematical modelling: ICTMA14 (pp. 15-30). Springer. https://doi.org/10.1007/978-94-007-0910-2_3
- Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt? Journal of mathematical modelling and application, 1(1), 45-58.
- Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics-ICTMA 12 (pp. 222-231). Woodhead Publishing. https://doi.org/10.1533/9780857099419.5.221
- Cai, J., Cirillo, M., Pelesko, J. A., Borromeo Ferri, R., Borba, M., Geiger, V., Stillman, G., English, L. D., Wake, G., Kaiser, G., & Kwon, O. N. (2014). Mathematical modeling in school education: Mathematical, cognitive, curricular, instructional and teacher educational perspectives. In P.Linlgedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), the Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (pp. 145-172). Springer.
- National Governors Association Center for Best Practices, & Council of Chief State School Officers. (2010). Common core state standards for mathematics. https://www.thecorestandards.org/Math/.
- Consortium for Mathematics and its Applications. (n.d.). About CMA. Retrieved from https://www.comap.com/about/
- Ding, M. (2016). Opportunities to learn: Inverse relations in U.S. and Chinese textbooks. Mathematical Thinking and Learning, 18(1), 45-68. https://doi.org/10.1080/10986065.2016.1107819
- English, L. D. (2006). Mathematical modeling in the primary school: Children's construction of a consumer guide. Educational Studies in Mathematics, 63, 303-323. https://doi.org/10.1007/s10649-005-9013-1
- Hwang, J., Choi, K. M., & Hand, B. (2023). Epistemic actions and mathematics achievement. International Journal of Science and Mathematics Education, 21(3), 787-809. https://doi.org/10.1007/s10763-022-10278-2
- Jung, H. Y., Jung, J. H., & Lee, K. H. (2020). Analyzing tasks in the geometry area of 7 th grade of Korean and US Textbooks from the perspective of mathematical modeling. Journal of the Korean School Mathematics Society, 23(2), 179-201. http://doi.org/10.30807/ksms.2020.23.2.001
-
Jung, H. Y., Lee, K. H., Baek, D. H., Jung, J. H., & Lim, K. S. (2018). Design for
subject's task based on the mathematical modeling perspective. School Mathematics, 20(1), 149-169. http://doi.org/10.29275/sm.2018.03.20.1.149 - Kaiser, G. (2017). The teaching and learning of mathematical modeling. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 267-291). NCTM
- Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM, 38, 302-310. https://doi.org/10.1007/BF02652813
- Kaiser, G., & Stender, P. (2013). Complex modelling problems in co-operative, self-directed learning environments. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 277-293). Springer. https://doi.org/10.1007/978-94-007-6540-5_23
- Kim, I. K. (2012). Comparison and analysis among mathematical modeling, mathematization, and problem solving. Journal for History of Mathematics, 25(2), 71-95.
- Kim, M. H. (2013). Secondary mathematics teachers 'use of mathematics textbooks and teachers' guide. School Mathematics, 15(3), 503-531.
- Kim, S. (2021). Analyzing tasks in the statistics area of Korean and Singaporean textbooks from the perspective of mathematical modeling: Focusing on 7th grade. Journal of the Korean School Mathematics Society, 24(3), 283-308. https://doi.org/10.30807/ksms.2021.24.3.003
- Kim, W. K., Cho, M. S., Bang, K. S., Yoon, J. K., Shin, J. H., Lim, S. H., Kim, D. H., Kang, S. J., Kim, K. T., Park, H. J., Shim, J. S., Oh, H. J., Lee, D. G., Lee, S. J., & Jung J. H. (2019). Math I. Bi-Sang education.
- Kwon, O. N., Shin, J. K., Jeon, I. T., Kim, M. J., Kim, C. H., Kim, T. H., Park, J. H., Bang, J. S., Park, J. H., Park, C. H., Park, H. G., Oh, G. H., Cho, K. H., Cho, S. H., & Hwang, S. M. (2019). Math I. Kyohak.
- Lesh, R. A., & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (1st ed.). Routledge. https://doi.org/10.4324/9781410607713
- Maass, K. (2010). Classification scheme for modelling tasks. Journal fur Mathematik Didaktik, 31(2), 285-311. https://doi.org/10.1007/s13138-010-0010-2
- Meyer, D. (2015). Missing the promise of mathematical modeling, Mathematics Teacher 108(8), 578-583. https://doi.org/10.5951/mathteacher.108.8.0578
- Ministry of Education. (2015). Mathematics curriculum. Ministry of Education announcement #2015-74.
- Ministry of Education. (2022). 2022 Revised Curriculum Draft for Mathematics Department. Public Hearing Version with National Participation and Communication Channel Included (2022.10.07.).
- National Governors Association Center for Best Practices, & Council of Chief State School Officers. (2010). Common core state standards for mathematics. http://www.corestandards.org/the-standards/mathematics
- Park, K. S., Lee, J. H., Kim, J. H., Nam, J. Y., Kim, N. H., Lim, J. H., Yoo, Y. J., Kwon, S. I., Kim, S. H., Kim, J. W., Kim, K. J., Yoon, H. S., Ko, H. J., Yoon, H. J., Kim, Y. S., Kim, H. S., Lee, K. J., Cho, Y. M., Lee, J. H., & Yang, J. E. (2019). Math I. Dong-A publishing.
- Park, H. B., & Lee, H. S. (2008). On the attractive teaching method of mathematics using living mathematics. Journal for History of Mathematics, 21(2), 135-152.
- Park, S. Y., & Han, S. Y. (2018). Reconstruction and application of reforming textbook problems for mathematical modeling process. The Mathematical Education, 57(3), 289-309. https://doi.org/10.7468/mathedu.2018.57.3.289
- Park, W. H., & Choi-Koh, S. S. (2022). A comparative study on International Baccalaureate Diploma Programme (IBDP) textbooks and Korean textbooks by the 2015 Revised Curriculum - Focus on function from a mathematical modeling perspective. Journal of the Korean School Mathematics Society, 25(2), 125-148. http://doi.org/10.30807/ksms.2022.25.2.002
- Polikoff, M. S. (2015). How well aligned are textbooks to the common core standards in mathematics? American Educational Research Journal, 52(6), 1185-1211. https://doi.org/10.3102/0002831215584435
- Pollak, H. O. (1968). On some of the problems of teaching applications of mathematics. Educational Studies in Mathematics, 1(1/2), 24-30. https://doi.org/10.1007/BF00426228
- Pollak, H. O. (1969). How can we teach applications of mathematics? Educational Studies in Mathematics, 2, 393-404. https://doi.org/10.1007/BF00303471
- Pollak, H. O. (1979). The interaction between mathematics and other school subjects. In UNESCO (Ed), New trends in mathematics teaching, vol. 4 (pp. 232-248). UNESCO.
- Pollak, H. O. (2011). What is mathematical modeling? Journal of Mathematics Education at Teachers College, 2(1), 64. https://doi.org/10.7916/jmetc.v2i1.694
- Senk, S. L., & Thompson, D. R. (2003). Standards-based school mathematics curricula: What are they? What do students learn? Lawrence Erlbaum.
- Shin, E. J., & Kwon, O. N. (2001). A Study of exploration oriented mathematical modeling. The journal of Educational Research in Mathematics, 11(1), 157-177.
- Smith, J. P., Males, L. M., & Gonulates, F. (2016). Conceptual limitations in curricular presentations of area measurement: one nation's challenges. Mathematical Thinking and Learning, 18(4), 239-270. https://doi.org/10.1080/10986065.2016.1219930