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Abstract 

 
We investigated the classification of learner groups for students' mathematical modeling 

competency and analyzed the characteristics in each profile group for each country and 

variable using PISA 2012 data from six countries. With a perspective on measuring sub-

competency, we applied the latent profile analysis method to student achievement for 

mathematical modeling variables - Formulate, Employ, Interpret. The findings showed 

the presence of 4-6 profile groups, with the variables exhibiting high and low 

achievement within each profile group varying by country, and a hierarchical structure 

was observed in the profile group distribution in all countries, interestingly, the 

Formulate variable showed the largest difference between high-achieving and low-

achieving profile groups. These results have significant implications. Comparison by 

country, variable, and profile group can provide valuable insights into understanding the 

various characteristics of students' mathematical modeling competency. The Formulate 

variable could serve as the most suitable predictor of a student's profile group and the 

score range of other variables. We suggest further studies to gain more detailed insights 

into mathematical modeling competency with different cultural contexts. 

 

Keywords: latent profile analysis, mathematical modeling, PISA 2012, International 

comparison 
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I. INTRODUCTION 

 

Mathematical modeling is an essential component of mathematics education, as it 

enables students to connect mathematical concepts to real-world situations. It involves 

using mathematics to solve problems and make decisions across a wide range of fields, 

including science, engineering, economics, and social sciences (Blum & Niss, 1991). 

Moreover, by developing robust mathematical modeling skills, students can increase their 

opportunities for success in various fields, including engineering, finance, and data analysis. 

Various efforts have been made to evaluate students' mathematical modeling competency, 

adopting holistic views that emphasize an epistemological perspective and approaches that 

focus on the sub-competencies of mathematical modeling from a cognitive perspective 

(Borromeo Ferri, 2006; Kaiser & Sriraman, 2006). 

Latent Profile Analysis (LPA) has been widely employed as an analytical tool in 

numerous mathematics education studies, both domestically and internationally. Notable 

examples include research examining the various types of motivation in mathematics 

learning (Hwang & Son, 2021), explorations into the characteristics of achievement related 

to attitudes towards mathematics (Chon & Kim, 2019), and studies leveraging PISA 2012 

data to investigate the pedagogical environments for mathematics in South Korea and 

Singapore (Yi & Lee, 2017). However, there is no previous studies were identified that 

focused on profiling mathematical modeling competency specifically. 

The significance of profiling students' mathematical modeling competency cannot 

be overstated. Such profiling enables educators to gain a more nuanced understanding of 

student performance in this essential aspect of mathematics, discerning patterns of 

strengths and weaknesses. This knowledge can subsequently guide the development of 

tailored instructional practices for individual students and groups. Moreover, competency 

profiling can inform curriculum development and assessment strategies by underscoring 

the specific skills and abilities requisite for successful mathematical modeling. 

The purpose of this paper is to classify learner groups related to students' 

mathematical modeling competency and to examine the characteristics of each profile by 

country, variable, and profile group. We assumed that students' mathematical modeling 

competency can be measured through their response results, and that the student population 

comprises qualitatively diverse groups. To compare and analyze the characteristics of a 

broader population, we utilized PISA 2012 data – which focused on mathematics – from 

six countries. Latent profile analysis was applied to distinguish students with qualitatively 

diverse characteristics, followed by a comparative analysis of characteristics by country, 

variable, and profile group. The various characteristics of profile groups analyzed in this 

study are expected to contribute to a wide range of research aimed at understanding and 

developing students' mathematical modeling competency, and improving policy. The 

research questions are: 

1.  What are the profile models of students' mathematical modeling competency 

in each country? 

2.  What are the characteristics of the profiles for students' mathematical 

modeling competency, by country, variable and profile group? 
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II. LITERATURE REVIEW 

 

Mathematical modeling is a process that involves using mathematical concepts, 

techniques, and structures to represent, analyze, and solve real-world problems. It is a 

powerful tool that allows researchers, educators, and professionals to describe complex 

systems, make predictions, and identify optimal solutions for practical challenges (Blum 

& Ferri, 2009). Mathematical modeling encompasses various mathematical branches, such 

as statistics, calculus, and algebra, and is widely used in diverse fields like economics, 

engineering, biology, and social sciences. 

The process of mathematical modeling has been discussed since the 19th century 

in Europe and North America, and has been defined from a variety of perspectives. For 

example, mathematical modeling has been defined as a circular process of converting real-

life problems into mathematical language, solving them within a symbolic system, and 

reexamining the results in light of real life (Verschaffel et al., 2002). It has also been 

defined as a process of using mathematics to represent real-life situations and contextual 

objects (Haines & Crouch, 2007), and as a powerful tool for researchers, educators, and 

professionals to describe complex systems, predict them, and provide optimal solutions to 

real-world problems (Blum & Ferri, 2009). 

The mathematical modeling cycle is a systematic approach to problem-solving that 

typically involves problem formulation, model construction, analysis and computation, 

model validation, and interpretation of the results (Galbraith & Stillman, 2006). From a 

similar perspective, PISA 2012 integrated mathematical modeling into the definition of 

mathematical literacy by establishing a cyclic process that includes four different 

competencies: Employ (problem-solving), Formulate (model construction), Interpret 

(analyzing results), and Evaluate (validating the model). Figure 1 illustrates the 

mathematical modeling cycle in PISA 2012 as a part of mathematical literacy (OECD, 

2013, p. 26), and Table 1 presents the activities included in the PISA 2012 assessment 

items related to the mathematical modeling variables presented by OECD (2013). The 

activities categorized by the mathematical modeling variable in Table 1 include those 

described by Galbraith & Stillman (2006), and the Formulate involves mathematical 

aspects in a real-world context, the Employ encompasses activities related to mathematical 

situations, and the Interpret relates back to the real-world context. 

 

Figure 1. Mathematical modeling cycle in PISA 2012 (OECD, 2013, p. 26) 
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Both the mathematical modeling process and the mathematical literacy framework 

of PISA 2012 share a common starting point, which is a real-world context, and create 

models to solve mathematical problems (Blum & Leiß, 2007). This highlights the 

importance of students' hypothetical and creative reasoning. In the process of mathematical 

modeling, speculative thinking is inevitable, leading to cases that are valid explanations 

based on the understanding of phenomena and rules called mathematical concepts (Baek 

& Lee, 2018). This allows students to abstract mathematical models from real-world 

models and modify the mathematical models they create (Kim & Kim, 2004). In PISA 

2012, this kind of speculative thinking is also represented by 'Formulate,' which is the 

ability to identify opportunities to apply and use mathematics, transform a presented 

situation into a form that can be processed mathematically, provide a mathematical 

structure and representation, and make assumptions to help solve the problem. 

 

Table 1. Activities included in mathematical modeling variable items (OECD, 2013, pp. 28-31) 

Variable Activities included in the item 

Formulate 

• Identifying mathematical aspects in a real-world problem, including variables, 

constraints and assumptions behind any mathematical modelling 

• Recognizing mathematical structure and connections to mathematical concepts; 

understanding relationships between real-world and symbolic math language 

• Simplifying a situation or problem for mathematical analysis 

• Representing situations with variables, symbols, diagrams, and models, and 

using tech to portray a mathematical relationship in a context  

Employ 

• Manipulating numbers, graphs, statistical data, algebraic and geometric forms 

• Using math tools and tech for problem-solving, switching between representations 

• Making diagrams, graphs, constructions, generalizations and extracting math information 

• Applying mathematical facts, rules, and structures; devising and implementing 

strategies for math solutions; reflecting and justifying on mathematical arguments 

Interpret 

• Interpreting a mathematical result back into the real-world context 

• Explaining why a mathematical result is sensible or not within problem’s context 

• Understanding real-world impacts on math procedure or models for contextual judgments 

• Evaluating the reasonableness of a mathematical solution in a real-world context; 

critiquing and identifying the limits of mathematical concepts, solutions, model 

used to solve a problem  

 

Both PISA's mathematical literacy framework and the mathematical modeling 

cycle share similarities in their structure and process (OECD, 2013). Both approaches start 

from real-world contexts, generate models to solve mathematical problems, and interpret 

the calculated results within the context of the problem (Blum & Leiß, 2007). These 

similarities highlight the importance of connecting mathematical knowledge with real-

world situations and the need for students to develop problem-solving and critical thinking 

skills (Jonassen, 2011). 
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However, there are differences between PISA's mathematical literacy framework 

and the mathematical modeling cycle, particularly in the competencies they emphasize 

(Maaß & Gurlitt, 2011). The mathematical modeling cycle focuses on the technical aspects 

of model construction and validation, while PISA's framework emphasizes the broader 

understanding and application of mathematics in real-life situations (Sriraman & Lesh, 

2006). Despite these differences, both processes involve reinterpreting calculated results 

in the context of the problem, emphasizing the importance of connecting mathematical 

knowledge to real-world situations and the need for students to develop problem-solving 

and critical thinking skills (Jonassen, 2011). 

Furthermore, mathematical modeling profiles examined through PISA 2012 refer 

to the unique ways individual approach and solve problems through mathematical 

modeling (Lesh & Lehrer, 2003). These profiles can be characterized by different levels of 

mastery and proficiency in the various competencies involved in the mathematical 

modeling cycle or PISA's mathematical literacy framework (Kaiser & Sriraman, 2006). By 

understanding and identifying these profiles, educators can tailor their instruction and 

assessment methods to better address the diverse needs and strengths of their students, 

fostering a more effective learning environment for mathematical modeling and its 

applications (Galbraith, 2012). 

 

Perspectives on Measuring Mathematical Modeling Competency 

Two main perspectives on measuring mathematical modeling competency are the 

holistic view and the sub-competency view. The holistic view considers mathematical 

modeling as a complex process that involves multiple competencies, including problem 

formulation, data analysis, mathematical modeling, and model validation. This view 

emphasizes the integration of these competencies and their effective coordination to solve 

real-world problems (Blum & Ferri, 2009; Lesh & Zawojewski, 2007). The evaluation 

criteria for this perspective may include the accuracy and validity of the model, the 

relevance of the model to the problem at hand, and the effectiveness of the model in 

addressing the problem (Galbraith & Stillman, 2006). 

In contrast, the sub-competency view breaks down the mathematical modeling 

process into individual competencies or sub-skills, such as formulating the problem, 

selecting appropriate mathematical techniques, analyzing data, and validating the model. 

This perspective emphasizes the mastery and proficiency of each sub-skill and the ability 

to perform them independently, with the ultimate goal of combining them in a cohesive 

manner to solve a real-world problem (Gravemeijer & Doorman, 1999; English & Watters, 

2005; Yoon et al., 2011). 

To investigate students' profiles of mathematical modeling, it is necessary to adopt 

a sub-competency view of mathematical modeling. Students' profiles of mathematical 

modeling cannot represent their overall performance of mathematical modeling but they 

can reveal their strengths and weaknesses when they engage in the mathematical modeling 

process. However, it should be noted that students' engagement in mathematical modeling 

tasks depends on real contexts, which can make it difficult to compare students' 

mathematical modeling competency. 
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III. METHODS 

 

Data Description 

The research subjects are students aged 15 from six countries among the 65 

countries that participated in PISA 2012. PISA 2012 results are the latest published data 

specifically focus on mathematics as a main domain, although PISA evaluates this subject 

in each of its assessments. The selected countries included South Korea, Singapore, Japan 

(Asia), Germany, Finland (Europe), and Australia (Oceania). The age of 15 corresponds to 

the time when compulsory education ends in most countries (OECD, 2013) and aligns with 

the third year of secondary school in South Korea. According to OECD (2013), the data 

was collected by sampling a minimum of 150 schools in each country, with a range of 

4,500 to 10,000 students, providing a good sampling basis to analyzing the results 

according to various student characteristics. Table 2 represents the number of data collected 

for six countries, and there are no missing values. 

 

Table 2. Data description 

Country Australia Germany Finland Japan Singapore 
South 

Korea 
Sum 

No. of 

students 
14,481 5,001 8,829 6,351 5,546 5,033 45,241 

 

Variables 

Three plausible values (PV1MAPF, PV1MAPE, PV1MAPI) representing student 

achievement of mathematical modeling variables were collected from the PISA 2012 

database. The PV1MAPF score represents student achievement on the Formulate variable, 

the PV1MAPE score represents student achievement on the Employ variable, and the 

PV1MAPI score represents student achievement on the Interpret variable. 

 

Data Analysis 

In this study, we applied latent profile analysis using Mplus8.8 (Muthén & Muthén, 

1998) to classify the types of learner groups for mathematical modeling variable and 

analyze their characteristics. Latent profile analysis (LPA) is a statistical approach for 

classifying and investigating qualitatively distinct profile groups based on the averages and 

patterns of learner response (observed continuous variables), which is one of the mixed 

modeling methods that estimate unobserved variables from observed data (Hwang & Ko, 

2018). Latent profile analysis offers the advantage of a person-centered statistical approach. 

It allows for the exploration of qualitative differences among individuals and uncovers 

previously unobservable sub-profile groups (Iverson et al., 2018). The application of LPA 

involves an exploratory process where the researcher sequentially increases the number of 

profiles, comparing each to derive the most appropriate final model. 
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In order to optimal determine the number of profiles by country, 7 indices (AIC, 

BIC, SABIC, LMRT, BLRT, Entropy, the number of profile groups with a case ratio of 

less than 5%) were comprehensively considered, and the final model was selected. First, 

the fit indices such as AIC (Akaike Information Criterion; Akaike, 1987), BIC (Bayesian 

Information Criterion; Schwarz, 1978), and SABIC (Sample-size Adjusted BIC; Sclove, 

1987) indicate that the smaller the value, the better the fit of the model. This means that as 

the number of profiles increases, the profiles are more differentiated and the model fit 

improves. Second, the statistical significance of LMRT (Lo-Mendell-Rubin adjusted 

likelihood ratio Test; Lo et al., 2001) and BLRT (Bootstrapped Likelihood Ratio Test; 

Arminger et al., 1999) is conducted. Specifically, if the p-value generated by LMRT and 

BLRT is less than the significance level 0.05 (p < 0.05), it suggests that the model is a 

better fit compared to a model with one less profile. Third, Entropy (Celeux & Soromenho, 

1996), which represents the classification accuracy of the profiles, ranges between 0 and 1. 

A value closer to 1 signifies the higher the classification accuracy, reported cut-off of 0.8 

or higher (Clark & Muthén, 2009). Fourth, it has been checked whether there are profile 

groups with a case ratio of less than 5% in each profiled group. Profiled groups with a case 

ratio of less than 5% are within the margin of error, therefore the fit of the profile may 

decrease (Marsh et al., 2009), and it’s note that the small groups (less than 5% of cases) 

are considered spurious (Hipp & Bauer, 2006). 

After determining the optimal number of profiles for each country using latent 

profile analysis, we analyzed the characteristics of the achievement distribution for each 

profile group and country, with respect to the mathematical modeling variables. 

 

 

IV. RESULTS 

 

Analysis of Student Achievement on Mathematical Modeling Variables 

Table 3 shows the descriptive statistics of student achievement on mathematical 

modeling variables, by country. The range of means for the Formulate variable was 486.9 

to 575.3, with a standard deviation range of 101.7 to 121.8. The range of means for the 

Employ variable was 489.4 to 569.4, with a standard deviation range of 84.8 to 98.1. The 

range of means for the Interpret variable was 503.6 to 550.1, with a standard deviation 

range of 92.4 to 105.7. 

Through Table 3, the following characteristics of the distribution of student 

achievement by variable and country can be confirmed. First, the country with the highest 

average of student achievement for the three variables is Singapore, and the country with 

the lowest average is Australia. Second, the variable associated with either the highest or 

lowest average of student achievement differed by country. Specifically, The Interpret 

variable is associated with the highest mean of student achievement in Australia, Finland, 

and Germany, the Formulate variable is associated with the highest mean of student 

achievement in Japan, Singapore, and South Korea. In contrast The Formulate variable in 

Australia and Germany, the Employ variable in Finland and Japan, and the Interpret 
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variable in Singapore and South Korea are associated with the lowest mean of student 

achievement. Third, the country with the highest standard deviation for each variable is 

South Korea (Formulate and Employ variables) and Germany (Interpret variable), whereas 

the country with the lowest standard deviation is Finland (Formulate and Employ variables) 

and Japan (Interpret variable). This means that South Korea and Germany students' 

achievement is more widely dispersed from the average compared to other countries. 

Fourth, the Formulate variable shows the highest standard deviation of student 

achievement in all countries, signifying that the students' achievement in the Formulate 

variable is most widely dispersed from the average. Conversely, the Employ variable 

shows the lowest standard deviation of student achievement in all countries, indicating that 

it is the least dispersed from the average. 

 

Table 3. Descriptive statistics of mathematical modeling variables 

Country Variable Mean Variance 
Standard 

Deviation 
Minimum Maximum Median 

Australia 
(n=14,481) 

Formulate 486.9  12,427.1 111.5 10.5  901.4 483.9 

Employ 489.4  9,426.6 97.1 21.7 810.3 489.5 

Interpret 503.6  10,802.6 103.9 109.3  827.4 503.6 

Finland 
(n=8,829) 

Formulate 506.7  10,335.6 101.7 138.1  841.4 508.0 

Employ 505.4  7,185.4 84.8 152.9  764.2 506.6 

Interpret 516.3  8,870.2 94.2 103.8  851.6 520.3 

Germany 
(n=5,001) 

Formulate 510.5  11,220.3 105.9 158.7  850.1 512.5 

Employ 515.5  9,030.2 95.0 207.0 794.0 519.7 

Interpret 517.1  11,178.7 105.7 119.7  852.4 523.1 

Japan 
(n=6,351) 

Formulate 553.9  12,026.1 109.7 130.2  932.3 556.1 

Employ 530.5  8,195.4 90.5 182.7  832.1 533.9 

Interpret 531.1  8,529.7 92.4 146.9  863.3 534.0 

Singapore 
(n=5,546) 

Formulate 575.3  12,428.5 111.5 79.8  974.1 579.8 

Employ 569.4  9,050.1 95.1 195.1  873.9 575.8 

Interpret 550.1  9,548.0 97.7 118.7  918.3 553.3 

South Korea 
(n=5,033) 

Formulate 562.1  14,826.7 121.8 184.8  916.9 564.6 

Employ 553.1  9,626.5 98.1 198.1  864.5 554.9 

Interpret 540.1  10,925.9 104.5 152.6  845.0 544.0 

 

Decision on the Profile Model by Country 

In this study, the number of profiles by country was determined comprehensively 

based on 7 indices: AIC, BIC, SABIC, pLMRT, pBLRT, Entropy, and the number of 

profile groups with a ratio of less than 5%. Table 4 presents the model fit index used to 

determine the number of profiles by country. First, in all countries, AIC, BIC, and SABIC 
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consistently decrease as the number of profiles increases. This indicates that the model fit 

improves and becomes more refined with an increasing number of profiles. Second, in all 

countries, the Entropy index exceeds 0.8. This value suggests that the classification 

accuracy of the profiles is high, with values closer to 1 indicating even better classification 

accuracy. Third, pLMRT, pBLRT, and the number of profile groups with a ratio of less 

than 5% exhibit differences in each country's profile model. Therefore, the optimal number 

of profiles was determined by considering these indices for each country's profile model as 

follows. 

As the most appropriate model for each country, Singapore and Korea have 4 

profiles, Finland, Germany, and Japan have 5 profiles, and Australia has 6 profiles. 

Australia was determined to have 6 profiles as the most appropriate model. The pLMRT 

value was found to be less than 0.05 for 6 profiles, while for 7 profiles, the pLMRT value 

exceeded 0.05. It indicates that 6 profiles are more a significant fit than 5, but there is no 

significant difference between 6 and 7 profiles. Additionally, with 7 profiles, there were 2 

profile groups with less than 5% of the case ratio, whereas with 6 profiles, no such groups 

were present. Furthermore, the Entropy was high for the model with 6 profiles. 

Finland was determined to have 5 profiles as the most appropriate model. 

Considering only the pLMRT values, since the pLMRT value was found to be less than 

0.05 for 6 profiles, but the pLMRT value exceeded 0.05 for 7 profiles, so a model with 6 

profiles may be more suitable. However, for the model with 6 or more profiles, there is at 

least one profile group with a case ratio of less than 5%: one profile group with a case ratio 

of less than 5% for the 6-profile model, two profile groups for the 7 and 8-profile models, 

and three profile groups for the 9 and 10-profile models. Since profile groups with a case 

ratio of less than 5% may decrease the fit of the profile model (Marsh et al., 2009) and are 

considered spurious (Hipp & Bauer, 2006), it has been determined that the most appropriate 

model is the one with 5 profiles. Furthermore, the entropy was high for the model with 5 

profiles. 

For Germany, a model with 5 profiles is the most appropriate. The pLMRT value 

was found to be less than 0.05 for 5 profiles, but for 6 profiles, the pLMR value exceeded 

0.05. This indicates that 5 profiles are a more significant fit than 4 profiles, but there is no 

significant difference between 5 and 6 profiles. Additionally, with 5 profiles, there were no 

profile groups with less than 5% of the case ratio, and the Entropy was the highest. 

For Japan, the most appropriate model is 5 profiles. The pLMRT value was found 

to be less than 0.05 for 5 profiles, but for 6 profiles, the pLMRT value exceeded 0.05. This 

suggests that having 5 profiles is a more significant fit than having 4 profiles, but there is 

no significant difference between having 5 and 6 profiles. Additionally, with 6 profiles, 

there was 1 profile group with a case ratio of less than 5%, whereas with 5 profiles, no such 

groups were present. Furthermore, the Entropy was high for the model with 5 profiles. 
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Table 4. Indicators of profile model fit by country 

Country Model AIC BIC pLMRT pBLRT Entropy 
No. of profile group 

<1% <5% 

Australia 

1 profile 526,829.2 526,874.7    0 0 

2 profiles 503,618.6 503,694.4 <0.001 <0.001 0.845 0 0 

3 profiles 490,701.0 490,807.1 <0.001 <0.001 0.869 0 0 

4 profiles 482,133.3 482,269.8 <0.001 <0.001 0.885 0 0 

5 profiles 476,824.4 476,991.2 0.001 <0.001 0.886 0 0 

6 profiles 473,254.9 473,452.0 0.030 <0.001 0.884 0 0 

7 profiles 470,807.5 471,034.9 0.052 <0.001 0.878 0 2 

Finland 

1 profile 315,444.8 315,487.3    0 0 

2 profiles 301,657.1 301,727.9 <0.001 <0.001 0.836 0 0 

3 profiles 292,717.0 292,816.2 <0.001 <0.001 0.884 0 0 

4 profiles 287,238.7 287,366.2 <0.001 <0.001 0.892 0 0 

5 profiles 283,694.9 283,850.8 0.038 <0.001 0.891 0 0 

6 profiles 281,035.8 281,220.0 0.002 <0.001 0.893 0 1 

7 profiles 279532.5 279745.0 0.293 <0.001 0.882 0 2 

Germany 

1 profile 181,391.3 181,430.4    0 0 

2 profiles 173,157.8 173,223.0 <0.001 <0.001 0.849 0 0 

3 profiles 168,359.9 168,451.1 <0.001 <0.001 0.880 0 0 

4 profiles 165,683.2 165,800.5 0.012 <0.001 0.884 0 0 

5 profiles 163,807.2 163,950.6 <0.001 <0.001 0.886 0 0 

6 profiles 162,806.7 162,976.1 0.325 <0.001 0.874 0 0 

Japan 

1 profile 228,461.5 228,502.0    0 0 

2 profiles 218,568.5 218,636.0 <0.001 <0.001 0.841 0 0 

3 profiles 212,969.6 213,064.2 <0.001 <0.001 0.874 0 0 

4 profiles 209,586.2 209,707.8 <0.001 <0.001 0.879 0 0 

5 profiles 207,570.1 207,718.7 0.005 <0.001 0.875 0 0 

6 profiles 206,200.9 206,376.5 0.061 <0.001 0.876 0 1 

Singapore 

1 profile 202,931.5 202,971.2    0 0 

2 profiles 193,707.5 193,773.8 <0.001 <0.001 0.856 0 0 

3 profiles 188,771.3 188,864.0 <0.001 <0.001 0.871 0 0 

4 profiles 185,756.1 185,875.3 <0.001 <0.001 0.885 0 0 

5 profiles 183,965.7 184,111.3 0.113 <0.001 0.878 0 0 

South Korea 

1 profile 182,284.2 182,323.3    0 0 

2 profiles 174,377.1 174,442.4 <0.001 <0.001 0.841 0 0 

3 profiles 169,851.3 169,942.6 <0.001 <0.001 0.871 0 0 

4 profiles 167,013.0 167,130.4 0.001 <0.001 0.882 0 0 

5 profiles 165,251.9 165,395.4 0.066 <0.001 0.882 0 0 

* The highlighted cell indicates the most suitable profile model for each country.  
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Table 5. Distribution of students of each country's profile group and the average student 

achievement for each variable 

Country 
Profile 

group 

No. of 

students 

Proportion 

(%) 

Achievement average 

Formulate Employ Interpret 

Australia 

(n=14,481) 

A 891  6.2 704.4  670.8 693.9 

B 2,533  17.5 604.6 592.7 611.6 

C 3,804  26.3 522.7 523.5 539.2 

D 3,966  27.4 444.1 454.4 467.7 

E 2,551  17.6 368.4 383.2 390.9 

F 736  5.1 273.6 293.5 299.3 

Finland 

(n=8,829) 

A 982  11.1 673.5 642.8 664.0 

B 2,259  25.6 579.0 566.9 583.8 

C 2,938  33.3 499.2 500.0 511.9 

D 2,009  22.8 414.4 428.6 433.1 

E 641  7.3 318.7 342.6 331.2 

Germany 

(n=5,001) 

A 614  12.3 676.8 660.5 676.4 

B 1,370  27.4 580.6 580.9 587.9 

C 1,522  30.4 499.1 508.6 510.3 

D 1,080  21.6 413.9 428.3 421.5 

E 415  8.3 326.3 338.1 320.9 

Japan 

(n=6,351) 

A 672  10.6 727.9 672.6 676.2 

B 1,693  26.7 634.1 597.6 597.6 

C 2,017  31.8 546.8 526.2 527.0 

D 1,452  22.9 459.6 452.3 451.8 

E 517  8.1 353.8 359.2 359.5 

Singapore 

(n=5,546) 

A 1,103  19.9 736.1 697.1 686.2 

B 2,108  38.0 616.1 604.0 583.3 

C 1,625  29.3 500.2 510.6 487.8 

D 710  12.8 379.0 405.1 384.0 

South Korea 

(n=5,033) 

A 1,007  20.0 711.5 679.1 665.1 

B 1,883  37.4 597.8 584.1 572.0 

C 562  11.2 491.6 494.5 482.1 

D 1,581  31.4 374.3 389.4 373.2 

* Bold font indicates the profile group with the largest number of students in each country. 

 

Singapore and South Korea were determined to have 4 profiles as the most 

appropriate model. The pLMRT value was found to be less than 0.05 for 4 profiles, while 
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for 5 profiles, the pLMRT value exceeded 0.05. It indicates that 4 profiles are a more 

significant fit than 3 profiles, but there are no significant differences between 4 and 5 

profiles. Furthermore, with 4 profiles, there were no profile groups with less than 5% of 

the case ratio, and the Entropy was the highest. 

 

Analysis of Results for the Profile Model by Country 

Utilizing the established profile model, Table 5 shows the average student 

achievement for each mathematical modeling variable, as well as the number and ratios of 

students in each profile group for each country. For example, in Australia, students in 

profile group A make up 6.2% of the total, and their average achievement is 704.4 points 

for the Formulate variable, 670.8 points for the Employ variable, and 693.9 points for the 

Interpret variable. In the same way, the data can be interpreted for other countries and 

profile groups. 

 
 

Figure 2. Distribution of profiles in each country for each mathematical modeling variable 

 

Based on the average student achievement data presented in Table 5, Figure 2 

represents the distribution of profile groups in each country for each mathematical 

modeling variable. Figure 3 shows the distribution of countries in each profile group for 

each mathematical modeling variable. Through the analysis of country-specific profiles for 

mathematical modeling variables, several characteristics can be identified in five aspects: 
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similarities and differences in the distribution of profile groups for each country, student 

achievement by profile groups and variables, and achievement gaps. 

First, in all countries, the profile groups within each country have a hierarchical 

structure, where the average student achievement for mathematical modeling variables 

tends to decrease as the hierarchy level decreases. In other words, as the country-level 

profile groups move from A to F, the average student achievement for the Formulate, 

Employ, and Interpret variables also decrease. Additionally, the lower average 

achievement for the Formulate variable was also indicated by lower average achievement 

for the Employ and Interpret variables in the profile group. This can be confirmed by the 

fact that the cross points between profile groups within each country do not appear in the 

line graph Figure 2. 

 

 

Figure 3. Distribution of countries in each profile for each mathematical modeling variable 

 

Second, the hierarchical structure of profile groups within a country is roughly 

established for profile groups in six countries (see Figure 3). This hierarchy was 

particularly evident in the high-achievement profile groups, while it was less pronounced 

in the low-achievement profile groups. In other words, there was no overlap in the 

distribution of high-achievement profile groups A, B, and C, while some overlap did occur 

in the low-achievement profile groups D and E among the countries. This is due to the 

number of profile groups in Australia being one to two more than other countries, whereas 
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Singapore and South Korea have the fewest profile groups at four, resulting the average 

achievement of Australia's profile group E was higher than that of Singapore and South 

Korea's profile group D. However, it should be noted that we used names from profile 

group A to F to differentiate groups by country, and using the same name in different 

countries does not imply homogeneity of the profile group. 

Third, among the mathematical modeling variables, the Formulate variable 

demonstrated the largest difference between the high-achievement and the low-

achievement profile groups (see Figure 2, 3). Specifically, in profile group A, which has 

high achievement, the average achievement for the Formulate variable was higher 

compared to other variables. In contrast, in the low-achievement profile groups D, E, and 

F, the average achievement for the Formulate variable was generally lower compared to 

other variables. The line graph for the high-achievement profile group A has its highest 

point on the left end, while the line graphs for the low-achievement profile groups D, E, 

and F generally have their lowest points on the left end. This is related to the Formulate 

variable having the highest standard deviation across all countries (see Table 3). 

Fourth, it's notable that in Singapore and South Korea, the proportion of high 

achieving profile groups A and B is larger compared to other countries, while the 

proportion of low achieving profile groups D and E is larger in other countries. In particular, 

Singapore stands out as the country with the highest average achievement for two out of 

three variables in the highest-achieving profile group A (see Figure 3). This is not unrelated 

to the result that Singapore and South Korea occupied the top ranks in PISA 2012. 

Fifth, the mathematical modeling variables associated with high or low average 

achievements manifested differently in each profile group for each country. Specifically, 

while Australia consistently exhibited high average achievement for the Interpret variable 

across all profile groups, the countries demonstrating low average achievement for the 

Interpret variable varied. Furthermore, countries with high or low average achievements 

for the Formulate and Employ variables varied across each profile group. Indeed, 

identifying the average achievement of each variable in each profile group is valuable for 

pinpointing potential areas of improvement in each country's education system. 

 

 

V. DISCUSSION AND CONCLUSION 

 

In this study, we classified types of learner groups based on student achievement 

in mathematical modeling competency and analyzed their characteristics in each variable 

for each country. We applied latent profile analysis method to mathematical modeling 

variables (Formulate, Employ, and Interpret), using student achievement data collected 

from 15-year-old students in six of the countries that participated in PISA 2012 (Australia, 

Finland, Germany, Japan, Singapore, Korea). The results of the analysis showed that first, 

the number of profile groups and the variables with high and low achievement in the profile 

groups varied by country. Second, distribution of profile groups for student achievement 

indicated a hierarchical structure in all countries. Third, the largest difference between 

high-achievement and low-achievement profile groups was found to be the Formulate 
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variable. Based on the analysis of students’ mathematical modeling competency, several 

implications were derived. 

First, comparison results by country, variable, and profile group can provide 

insight into understanding various characteristics of students' mathematical modeling 

competency. These results can be particularly valuable for teachers, education researchers, 

and policymakers. By providing comparison results by country, they can identify the 

relative position of South Korean students' mathematical modeling competency and 

ascertain the strengths and weaknesses of each variable. By offering a hierarchical structure 

in the comparison results by variable and profile group, teachers can monitor students’ 

progress in mathematical modeling competency. Consequently, teachers can provide 

students with feedback to help them advance to the next profile group. According to 

Research Result 1, the variable with the highest average and variance of student 

achievement varied by country. In Australia, Finland, and Germany, the Interpret variable 

had the highest average, while in Japan, Singapore and South Korea, the Formulate variable 

had the highest average. Formulate and Employ variables had the highest standard 

deviation in South Korea, and Interpret variable had the highest standard deviation in 

Germany for student achievement. This indicates that in South Korea, the education gap is 

highest for Formulate and Employ variables, despite the Formulate variable having the 

highest average. Furthermore, Research Result 2 showed that the number and proportion 

of profile groups differed by country. That is, Singapore and Korea had 4 profile groups, 

Finland, Germany, and Japan had 5 profiles, and Australia had 6 profiles. Notably, In South 

Korea, the proportion of high-achieving profile groups A and B was higher than in other 

countries. Finally, according to Research Result 3, the high-achieving and low-achieving 

variables within each profile group varied by country. Specifically, in Australia, it is 

characteristic that the Interpret variable showed high achievement in all profile groups, but 

in other countries and across variables, it was diverse by profile groups. In all variables and 

all countries, the profile groups with the most outliers were found to be profile group A, 

which had the highest achievement, and profile group D, E or F which had the lowest 

achievement. Through these findings, it is anticipated that various insights into the 

characteristics of country-specific profile groups can be comprehensively considered and 

utilized in the development of mathematics education policies and systems. 

Second, it's possible to predict a student's profile group and the score range of other 

variables based on the student's achievement for one of the mathematical modeling 

variables. In this regard, the Formulate variable could serve as the most suitable scale. 

According to research result 3, the distribution of profile groups for mathematical modeling 

variables exhibits a hierarchical structure in all countries, suggesting a high correlation 

among these variables. This indicates that a student's profile group could potentially be 

predicted based on their achievement in a single variable. Additionally, according to 

Research Results 1 and 3, the Formulate variable shows the largest standard deviation 

among mathematical modeling variables across all countries. It also exhibits the largest 

difference between the high and low achievement profile groups in the Formulate variable.  

This is likely due to the wide distribution range of student achievement results for 

the Formulate variable, which suggests that it can provide a more sensitive scale compared 

to other variables. As a result, student achievement in the Formulate variable could be 
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efficiently utilized to predict a student's profile group and achievement in other 

mathematical modeling variables, potentially leading to reductions in time and cost. 

Specifically, in the analysis of this study, activities associated with the established 

Formulate variable include identifying problems in real-world contexts, recognizing 

mathematical structures, simplifying problems, and mathematically representing situations. 

Hence, the study suggests the need to consider the Formulate variable, which is related to 

the achievement of these activities, as a measure in the achievement analysis of 

mathematical modeling. 

On the other hand, this study takes an approach from the perspective that 

achievement for mathematical modeling variables can be measured through individual 

evaluation items. And it has limitations as it does not consider the cultural context of each 

country. It is suggested that further analysis studies, encompassing a variety of contexts 

and providing detailed insights into mathematical modeling competency and cultural 

factors, be conducted. Additionally, we propose a follow-up study to explore more in-depth 

the influencing factors that show the greatest difference in the Formulate variables among 

mathematical modeling variables. 
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