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MAXIMAL STRONG PRODUCT AND BALANCED FUZZY

GRAPHS†

TALAL ALI AL-HAWARY

Abstract. The notion of maximal product of two fuzzy graphs was in-

troduced by Radha and Arumugam in 2015 and the notion of balanced
fuzzy graph was introduced by Al-Hawary in 2011. In this paper, we give

a modification of the maximal product definition, which we call maximal

strong product. We also introduce the relatively new notion of maximal-
balanced fuzzy graphs. We give necessary and sufficient conditions for the

maximal strong product of two balanced (resp., maximal-balanced) fuzzy
graphs to be balanced (resp., maximal-balanced) and we prove that these

two independent notions are preserved under isomorphism.
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A fuzzy subset of a non-empty set V is a mapping σ : V → [0, 1] and a fuzzy
relation µ on a fuzzy subset σ, is a fuzzy subset of V × V. All throughout this
paper, we assume that σ is reflexive, µ is symmetric and V is finite.

Definition 0.1. [16] A fuzzy graph, with V as the underlying set, is a pair
G : (σ, µ) where σ : V → [0, 1] is a fuzzy subset and µ : V ×V → [0, 1] is a fuzzy
relation on σ such that µ(x, y) ≤ σ(x)∧σ(y) for all x, y ∈ V, where ∧ stands for
minimum. The underlying crisp graph of G is denoted by G∗ : (σ∗, µ∗) where
σ∗ = sup p(σ) = {x ∈ V : σ(x) > 0} and µ∗ = sup p(µ) = {(x, y) ∈ V × V :
µ(x, y) > 0}.H = (σ′, µ′) is a fuzzy subgraph of G if there exists X ⊆ V such
that σ′ : X → [0, 1] is a fuzzy subset and µ′ : X ×X → [0, 1] is a fuzzy relation

on σ′ such that µ
′
(x, y) ≤ σ

′
(x) ∧ σ

′
(y) for all x, y ∈ X.

Definition 0.2. [16] Two fuzzy graphs G1 : (σ1, µ1) with underlying graph G∗
1 :

(V1, E1) and G2 : (σ2, µ2) with underlying graph G∗
2 : (V2, E2) are isomorphic if

there exists a bijection h : V1 → V2 such that σ1(x) = σ2(h(x)) for all x ∈ V1and
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µ1(x, y) = µ2(h(x), h(y)) for all (x, y) ∈ E1. We then write G1 ≃ G2 and h is
called an isomorphism. If G1 = G2, h is called an automorphism.

A fuzzy graph G : (σ, µ) with underlying graph G∗ : (V,E) is said to be
complete if µ(x, y) = σ(x) ∧ σ(y) for all x, y ∈ V and G is strong if µ(x, y) =
σ(x) ∧ σ(y) for all x, y ∈ E.

Definition 0.3. [17] The complement of fuzzy graph G : (σ, µ) is defined to be
the fuzzy graph G : (σ, µ) where σ = σ and

µ(x, y) = σ(x) ∧ σ(y)− µ(x, y).

Graph theory has many interesting applications in system analysis, econom-
ics and operations research. Most of the time the aspects of graph problems
are uncertain and so it is nice to deal with these aspects via the methods of
fuzzy logic. The concept of fuzzy relation which has a widespread application
in pattern recognition was introduced by Zadeh [20] in his paper ”Fuzzy sets”
in 1965. Fuzzy graph and several fuzzy analogs of graph theoretic concepts
were first introduced by Rosenfeld [16] in 1975. Fuzzy graph theory is finding
more and more increasing number of applications in modelling real time systems
where the level of information inherent in the system varies with distinct levels
of precision. Fuzzy models are becoming useful because of their aim is to reduce
the differences between the traditional numerical models used in engineering and
sciences and the symbolic models used in expert systems.

Since the notions of degree, complement, completeness, regularity, connected-
ness and many others play very important rules in the crisp graph case, the idea
is to find what corresponds to these notions in the case of fuzzy graphs. Several
authors have studied operations on fuzzy graphs, see for example [2, 3, 4, 5, 6,
7, 8, 9, 10]. AL-Hawary [1] introduced the concept of balanced fuzzy graphs. He
defined three new operations on fuzzy graphs and explored what classes of fuzzy
graphs are balanced. Sense then, many authors have studied the idea of balanced
on distinct kinds of fuzzy graphs, see for example [11, 12, 13, 14, 18, 19].

Our aim in this paper is to study the notions of complete, strong, balanced and
maximal-balanced product fuzzy graphs. Moreover, the relatively new operation
of maximal strong product on fuzzy graphs are provided and properties are
deeply explored.

Definition 0.4. The maximal strong product of two fuzzy graphs G1 : (σ1, µ1)
with underlying graph G∗

1 : (V1, E1) and G2 : (σ2, µ2) with underlying graph
G∗

2 : (V2, E2), where we assume that V1 ∩ V2 = ∅, is defined to be the fuzzy
graph G1 ⊛ G2 : (σ1 ⊛ σ2, µ1 ⊛ µ2) with underlying graph G∗ : (V1 × V2, E)
where E = {(x, y1)(x, y2) : x ∈ V1, y1y2 ∈ E2} ∪ {(x1, y)(x2, y) : x1x2 ∈ E1, y ∈
V2} ∪ {(x1, y1)(x2, y2) : x1x2 ∈ E1, y1y2 ∈ E2},

(σ1 ⊛ σ2)(x, y) = σ1(x) ∨ σ2(y) for all x ∈ V1, y ∈ V2

(µ1 ⊛ µ2)((x, y1)(x, y2)) = σ1(x) ∨ µ2(y1, y2),
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(µ1 ⊛ µ2)((x1, y)(x2, y)) = σ2(y)) ∨ µ1(x1, x2) and

(µ1 ⊛ µ2)((x1, y1)(x2, y2)) = µ1(x1, x2) ∨ µ2(y1, y2).

Next, we show that the above definition is well defined.

Lemma 0.5. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are two fuzzy graphs, then
G1 ⊛G2 is a fuzzy graph.

Proof. Case 1. If x ∈ V1, y1y2 ∈ E2, then

(µ1 ⊛ µ2)((x, y1)(x, y2)) = σ1(x) ∨ µ2(y1, y2)

≤ σ1(x) ∨ (σ2(y1) ∧ σ2(y2))

= (σ1(x) ∨ σ2(y1)) ∧ (σ1(x) ∨ σ2(y2))

= ((σ1 ⊛ σ2)(x, y1)) ∧ ((σ1 ⊛ σ2)(x, y2)).

Case 2. If x ∈ V1, y1y2 ∈ E2, then by a similar argument to that in Case 1,

(µ1 ⊛ µ2)((x1, y)(x2, y)) ≤ ((σ1 ⊛ σ2)(x1, y)) ∧ ((σ1 ⊛ σ2)(x2, y)).

Case 3. If x1x2 ∈ E1, y1y2 ∈ E2, then

(µ1 ⊛ µ2)((x1, y1)(x2, y2))

= µ1(x1, x2) ∨ µ2(y1, y2)

≤ (σ1(x1) ∧ σ1(x2)) ∨ (σ2(y1) ∧ σ2(y2))

= ((σ1(x1) ∧ σ1(x2)) ∨ σ2(y1)) ∧ ((σ1(x1) ∧ σ1(x2)) ∨ σ2(y2))

≤ (σ1(x1) ∨ σ2(y1)) ∧ (σ1(x2) ∨ σ2(y2))

= ((σ1 ⊛ σ2)(x1, y1)) ∧ ((σ1 ⊛ σ2)(x2, y2)).

□

Lemma 0.6. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are two complete fuzzy graphs,
then G1 ⊛G2 is complete.

Proof. Since G1 and G2 are complete, then µ1(x1, x2) = σ1(x1) ∧ σ1(x2) for all
x1, x2 ∈ V1 and µ2(y1, y2) = σ2(y1) ∧ σ2(y2) for all y1, y2 ∈ V2. Thus

(µ1 ⊛ µ2)((x, y1)(x, y2)) = σ1(x) ∨ µ2(y1, y2)

= σ1(x) ∨ (σ2(y1) ∧ σ2(y2))

= (σ1(x) ∨ σ2(y1)) ∧ (σ1(x) ∨ σ2(y2))

= ((σ1 ⊛ σ2)(x, y1)) ∧ ((σ1 ⊛ σ2)(x, y2)).

A similar argument gives

(µ1 ⊛ µ2)((x1, y)(x2, y)) = ((σ1 ⊛ σ2)(x1, y)) ∧ ((σ1 ⊛ σ2)(x2, y)).

Finally,

(µ1 ⊛ µ2)((x1, y1)(x2, y2))

= µ1(x1, x2) ∨ µ2(y1, y2)

= (σ1(x1) ∧ σ1(x2)) ∨ (σ2(y1) ∧ σ2(y2))
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= ((σ1(x1) ∧ σ1(x2)) ∨ σ2(y1)) ∧ ((σ1(x1) ∧ σ1(x2)) ∨ σ2(y2))

= (σ1(x1) ∨ σ2(y1)) ∧ (σ1(x2) ∨ σ2(y2))

= ((σ1 ⊛ σ2)(x1, y1)) ∧ ((σ1 ⊛ σ2)(x2, y2)).

□

Corollary 0.7. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are two strong (complete)
fuzzy graphs, then G1 ⊛G2 is strong.

Theorem 0.8. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are complete fuzzy graphs,
then G1 ⊛G2 ≃ Ḡ1 ⊛ Ḡ2.

Proof. Let G1 ⊛G2 = (σ1 ⊛ σ2, µ1 ⊛ µ2) . We only need to show that

(µ1 ⊛ µ2)((x, y1)(x, y2)) = (µ̄1 ⊛ µ̄2)((x, y1)(x, y2)), (µ1 ⊛ µ2)((x1, y)(x2, y)) =

(µ̄1⊛µ̄2)((x1, y)(x2, y)) and (µ1 ⊛ µ2)((x1, y1)(x2, y2)) = (µ̄1⊛µ̄2)((x1, y1)(x2, y2)).
Since G1 and G2 are two complete fuzzy graphs, then by Lemma 0.6, G1 ⊛ G2

is complete. Hence

µ1 ⊛ µ2((x, y1)(x, y2)) = 0.

On the other hand, since G1 and G2 are two complete fuzzy graphs, their com-
plements are empty fuzzy graphs and the maximal strong product of two empty
fuzzy graphs is empty. So (µ̄1 ⊛ µ̄2)((x, y1)(x, y2)) = 0.

Thus (µ1 ⊛ µ2)((x, y1)(x, y2)) = (µ̄1⊛µ̄2)((x, y1)(x, y2)). By a similar argument,

(µ1 ⊛ µ2)((x1, y)(x2, y)) = (µ̄1⊛µ̄2)((x1, y)(x2, y)) and (µ1 ⊛ µ2)((x1, y1)(x2, y2))
= (µ̄1 ⊛ µ̄2)((x1, y1)(x2, y2)). □

1. Balanced product fuzzy graphs.

We start this section by recalling the definition of balanced fuzzy graph.

Definition 1.1. [1]The density of a fuzzy graph is D(G) =

2
∑

(x,y)∈E

(µ(x, y))∑
x,y∈V

(σ(x) ∧ σ(y))
.

G is balanced if D(H) ≤ D(G) for any non-empty product fuzzy subgraphs H
of G.

We next provide a necessary and sufficient condition for the density of the
maximal product of two fuzzy graphs to be equal to the density of both fuzzy
graphs.

Lemma 1.2. Let G1 : (σ1, µ1) and G2 : (σ2, µ2) be two complete fuzzy graphs.
Then D(G1 ⊛ G2) ≥ D(Gi) for i = 1, 2 if and only if D(G1) = D(G2) =
D(G1 ⊛G2).
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Proof. If D(G1 ⊛G2) ≥ D(Gi) for i = 1, 2, then

D(G1) =

2
∑

x1,x2∈V1

(µ1(x1, x2))∑
x1,x2∈V1

(σ1(x1) ∧ σ1(x2))

≥
2

∑
x∈V1,y1,y2∈V2

σ1(x) ∨ (σ2(y1) ∧ σ2(y2))∑
x∈V1,y1,y2∈V2

σ1(x) ∨ (σ2(y1) ∧ σ2(y2))

≥
2

∑
x∈V1,y1y2∈E2

σ1(x) ∨ µ2(y1, y2)∑
x∈V1,y1,y2∈V2

(σ1(x) ∨ σ2(y1)) ∧ (σ1(x) ∨ σ2(y2))

= D(G1 ⊛G2).

Other cases are similar.
The converse is trivial. □

Next, a necessary and sufficient condition for the maximal product of two
balanced fuzzy graphs to be balanced is provided.

Theorem 1.3. Let G1 : (σ1, µ1) and G2 : (σ2, µ2) be two balanced fuzzy graphs.
Then G1 ⊛G2 is balanced if and only if D(G1) = D(G2) = D(G1 ⊛G2).

Proof. If G1 ⊛ G2 is balanced, then D(Gi) ≤ D(G1 ⊛ G2) for i = 1, 2 and by
Lemma 1.2, D(G1) = D(G2) = D(G1 ⊛G2).

Conversely, if D(G1) = D(G2) = D(G1 ⊛ G2) and H is a fuzzy subgraph of
G1 ⊛G2, then there exist fuzzy subgraphs H1 of G1 and H2 of G2. As G1 and
G2 are balanced and D(G1) = D(G2) = n1/r1, then D(H1) = a1/b1 ≤ n1/r1
and D(H2) = a2/b2 ≤ n1/r1. Thus a1r1+a2r1 ≤ b1n1+b2n1 and hence D(H) ≤
(a1 + a2)/(b1 + b2) ≤ n1/r1 = D(G1 ⊛G2). Therefore, G1 ⊛G2 is balanced. □

2. Maximal-balanced fuzzy graphs

In this section, we introduce the relatively new notion of maximal-balanced.
We note that using this notion, we get better results than using balanced one.

Definition 2.1. The maximal-density of a fuzzy graph G is

CD(G) = 2

∑
(x,y)∈E

µ(x,y))∑
x,y∈V

σ(x)∨σ(y) . G is maximal-balanced if MD(H) ≤ MD(G) for all

fuzzy non-empty subgraphs H of G.

Theorem 2.2. Let G be a fuzzy graph. Then MDG) ≤ 2 if and only if and
only if G is complete.
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Proof. Let G be a complete fuzzy graph. Then MD(G) =
2

∑
x,y∈V

σ(x)∧σ(y)∑
x,y∈V

σ(x)∨σ(y) ≤ 2.

Conversely, suppose G is not complete with maximal-density less than or equals

to 2. Then MD(G) =
2

∑
(x,y)∈E

µ(x,y))∑
x,y∈V

σ(x)∨σ(y) ≤ 2. So
∑

(x,y)∈E µ(x, y)) ≥
∑

x,y∈V σ(x)∨

σ(y). Since G is not complete, µ(x, y) < σ(x) ∧ σ(y) for some x, y ∈ V. That
means µ(x́, ý) > σ(x́) ∨ σ(ý) for some x́, ý ∈ V − {x, y} , a contradiction. □

Theorem 2.3. Any complete fuzzy graph is maximal-balanced.

Proof. Let G be a complete fuzzy graph. Then by Theorem 2.2, MD(G) ≤ 2.
If H is a non-empty fuzzy subgraph of G, then we have two cases: □

Case I IfH has less edges thanG, then
∑

(x,y)∈E(H) µ(x, y)) ≤
∑

(x,y)∈E µ(x, y))

and
∑

x,y∈V (H) σ(x) ∨ σ(y) =
∑

x,y∈V σ(x) ∨ σ(y). Thus

MD(H) =

2
∑

(x,y)∈E(H)

(µ(x, y))∑
x,y∈V (H)

(σ(x) ∨ σ(y))
=

2
∑

(x,y)∈E(H)

(µ(x, y))∑
x,y∈V

(σ(x) ∨ σ(y))

≤
2

∑
(x,y)∈E

(µ(x, y))∑
x,y∈V

(σ(x) ∨ σ(y))
≤ 2 ≤ MD(G).

Case II If H has vertices lass than G, then it is clear that H is a complete
fuzzy graph. We conclude that MD(H) = MD(G).

Thus G is maximal-balanced product fuzzy graph.
The converse of preceding result need not be true.

Example 2.4. Consider the fuzzy graph G such that σ(x1) = 0.1, σ(x2) =
0.2 = σ(x3), µ(x1, x2) = 0.01 = µ(x1, x3) and µ(x2, x3) = 0.02. Then G is a
maximal-balanced fuzzy graph that is not complete.

Theorem 2.5. Every self-complementary fuzzy graph has maximal-density less
than or equal to 1.

Proof. Let G be self-complementary fuzzy graph. Then

MD(G) =

2
∑

(x,y)∈E

µ(x, y)∑
x,y∈V

(σ(x) ∨ σ(y))
=

2 1
2

∑
x,y∈V

(σ(x) ∧ σ(y))∑
x,y∈V

(σ(x) ∨ σ(y))
=

∑
x,y∈V

(σ(x) ∧ σ(y))∑
x,y∈V

(σ(x) ∨ σ(y))
≤ 1

□

The converse of the above result need not be true.

Example 2.6. Consider the fuzzy graph G such that σ(x1) = 0.1, σ(x2) =
0.2, σ(x3) = 0.4, µ(x1, x2) = 0.02, µ(x1, x3) = 0 and µ(x2, x3) = 0.05. Then
MD(G) ≤ 1, but G is not self-complementary.
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Theorem 2.7. Let G : (σ, µ) be a fuzzy graph such that µ(x, y) = 1
2 (σ(x)σ(y))

for all x, y ∈ V. Then MD(G) ≤ 1.

Proof. By Lemma 1.2, G is self-complementary and by Theorem 2.5,MD(G1) ≤
1. □

Lemma 2.8. Let G1 : (σ1, µ1) and G2 : (σ2, µ2) be two complete fuzzy graphs.
Then MD(Gi) ≤ MD(G1⊛G2) for i = 1, 2 if and only if MD(G1) = MD(G2) =
MD(G1 ⊛G2).

Proof. If D(Gi) ≤ D(G1 ⊛G2) for i = 1, 2, then since G1 and G2 are complete
fuzzy graphs, by Theorem 2.7,

MD(G1),MD(G2) ≤ 2.

By the preceding Corollary, G1 ⊛ G2 is strong and hence by Theorem 2.7,
MD(G1 ⊛ G2) < 2. Thus MD(Gi) ≥ MD(G1 ⊛ G2) for i = 1, 2 and so
MD(G1) = MD(G2) = MD(G1 ⊛G2). □

The converse is trivial.

Theorem 2.9. Let G1 : (σ1, µ1) and G2 : (σ2, µ2) be two maximal-balanced fuzzy
graphs. Then G1⊛G2 is maximal-balanced if and only if MD(G1) = MD(G2) =
MD(G1 ⊛G2).

Proof. If G1 ⊛ G2 is maximal-balanced, then MD(Gi) ≤ MD(G1 ⊛ G2) for
i = 1, 2 and by Lemma 2.8, MD(G1) = MD(G2) = MD(G1 ⊛G2). Conversely,
If MD(G1) = MD(G2) = MD(G1⊛G2) and H is a fuzzy subgraph of G1⊛G2,
then there exist fuzzy subgraph H1 of G1 and H2 of G2 such that H ≃ H1⊛H2.
As G1 and G2 are maximal-balanced and say MD(G1) = MD(G2) =

n1

r1
, then

MD(H1) =
a1

b1
≤ n1

r1
and MD(H2) =

a2

b2
≤ n1

r1
. Thus a1r1 + a2r1 ≤ b1n1 + b2n1

and hence MD(H) ≤ a1+a2

b1+b2
≤ n1

r1
= MD(G1 ⊛ G2). Therefore G1 ⊛ G2 is

maximal-balanced. □

Theorem 2.10. Let G1 : (σ1, µ1) and G2 : (σ2, µ2) be isomorphic fuzzy graphs.
If one of them is maximal-balanced, then the other is maximal-balanced.

Proof. Suppose G2 is maximal-balanced and let h : V1 → V2 be a bijection
such that σ1(x) = σ2(h(x)) and µ1(x, y) = µ2(h(x), h(y)) for all x, y ∈ V1. Thus∑

x∈V1
σ1(x) =

∑
x∈V2

σ2(x) and
∑

x,y∈E1
µ1(x, y) =

∑
x,y∈E2

µ2(x, y). If H1 =

(σ́1, µ́1) is a fuzzy subgraph of G1 with underlying set W, then H2 = (σ́2, µ́2)
is a fuzzy subgraph of G2 with underlying set h(W ) where σ́2(h(x)) = σ́1(x)
and µ́2(h(x), h(y)) = µ́1(x, y) for all x, y ∈ W. Since G2 is maximal-balanced,

MD(H1) ≤ MD(G2) and so 2
∑

x,y∈E1
µ2(h(x),h(y))∑

x,y∈V (H2)(σ́2(x)∨σ́2(y))
≤ 2

∑
x,y∈E1

µ2(x,y)∑
x,y∈V2

(σ2(x)∨σ2(y))
≤

2
∑

x,y∈E1
µ1(x,y)∑

x,y∈V2
(σ2(x)∨σ2(y))

. Therefore, G1 is maximal-balanced. □
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Next, we show that the notions of balanced and maximal-balanced are inde-
pendent.

Example 2.11. Consider the fuzzy graph G such that σ(x1) = 0.3, σ(x2) = 0.2,
σ(x3) = 0.1, µ(x1, x2) = 0.06, µ(x1, x3) = 0.03 and µ(x2, x3) = 0.02. Then G
is maximal-balanced, but is not balanced since D(G) = 0.275, but if we take
H = (x1, x3), then D(H) = 0.6.

The fuzzy graph G with σ(x1) = 0.5, σ(x2) = 0.7 = σ(x3), µ(x1, x2) = 0.1 =
µ(x1, x3) and µ(x2, x3) = 0.4. is balanced, but is not maximal-balanced since if
we take H = (x2, x3), then MD(H) = 1.14 while MD(G) = 1.04.

Theorem 2.12. Every balanced complete fuzzy graph is maximal-balanced.

Proof. Let G be a balanced complete fuzzy graph and H be a non-empty fuzzy
subgraph of G. Then as G is balanced , D(H) ≤ D(G). Since G is complete, G
is maximal-balanced by Theorem 2.3. □
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