
J. Appl. Math. & Informatics Vol. 41(2023), No. 5, pp. 1057 - 1069
https://doi.org/10.14317/jami.2023.1057

APPROXIMATION OF LIPSCHITZ CLASS BY

DEFERRED-GENERALIZED NÖRLUND (Dγ
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Abstract. In this paper, we have determined the degree of approxima-

tion of function belonging of Lipschitz class by using Deferred-Generalized
Nörlund (Dγ

β .Npq) means of Fourier series and conjugate series of Fourier

series, where {pn} and {qn} is a non-increasing sequence. So that results

of DEG̃ER and BAYINDIR [23] become special cases of our results.
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1. Introduction

Many researchers like Leindler [7], Rhoades [21], Agnew [22], Qureshi and
Neha, [20], Khatri and Mishra [4], Mishra et al. ([9], [11], [12]) Mishra and
Mishra [10], Deepmala et al. [3], Nigam [18], Nigam and Sharma [19], Lal ([6],
[8]), Khan [5], Chandra [1] have studied the degree of approximation of functions
belonging to various Lipschitz classes by using summability methods of Fourier
series and conjugate series of Fourier series. Working in similar direction Mishra
et al. ([14], [15], [16], [17]) have determined the degree of approximation of con-
jugate of function belonging to Lipschitz class by Cesáro-Nörlund product means
of conjugate series of Fourier series . Later on DEG̃ER and BAYINDIR [23] es-
tablished the trigonometric approximation of functions belonging to Lipschitz
class by Deferred-Nörlund (Db

a.Np) product means . Now, we are using more
general method to determine the degree of approximation of functions belonging
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to Lipschitz class which reduces to the results of DEG̃ER and BAYINDIR [23]
as particular cases.

2. Definitions

Definition 2.1. Let a function f is 2π periodic and Lebesgue integrable in [0, 2π]
with nth partial sums sn(f). Then,

(2.1) sn(f ;x) =
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx), n ∈ N

with s0(f ;x) =
1
2a0.

The conjugate series of Fourier series (1.1) is given by

(2.2) S̃n[f ] =

∞∑
k=1

(ak sin kx− bk cos kx).

A function f ∈ Lipα, if

f(x+ t)− f(x) = O(|tα|) for 0 < α ⩽ 1, t > 0.

The L∞-norm of function f : R → R is defined by

∥f∥∞ = sup|f(x)|, x ∈ R.

The Lr-norm of function is defined by

∥f∥r =

(∫ 2π

0

|f(x)|rdx
)1/r

, 1 ≤ r < ∞.

The degree of approximation of function f : R → R by a trigonometric
polynomial tn of order n under sup norm ∥.∥∞ is defined by Mac.Fadden [13].

∥tn − f∥∞ = sup{|tn(x)− f(x)|, x ∈ R}
and the degree of approximation of function En(f) of a function f ∈ Lr is defined
by

En(f) = min∥tn(x)− f(x)∥r.

We use following notations through out the paper

ϕx(t) = f(x+ t)− 2f(x) + f(x− t)

ϕx(t) = f(x+ t)− f(x− t)

and

f̄(x) = − 1

2π

∫ 2π

0

ϕx(t) cot(t/2)dt.

If f ∈ Lr , then f̃ exists for almost all x.
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Let {pn} and {qn} be a non-negative sequence of real line. The transformation
given by

tNn =
1

Rn

n∑
ν=0

pn−νqνsν(f ;x)

is called the generalized Nörlund mean (N, pn, qn) of the sequence sn(f ;x) where

Rn =

n∑
k=0

pn−kqk, ∀n ≥ 0 and Rn → ∞, as n → ∞.

In the special case in which the generalized Nörlund mean Npq reduces to
the familiar Cα mean with a Npq mean define (C1.Npq) summability. Thus the

(C1.Npq) and (C1.Ñpq) means are given respectively by the transformations

(2.3) tCN
n =

1

n+ 1

n∑
k=0

R−1
k

k∑
ν=0

pk−νqνsν (f ;x) ,

and

(2.4) t̃CN
n =

1

n+ 1

n∑
k=0

R−1
k

k∑
ν=0

pk−νqν s̃ν (f ;x)

The Fourier series of f is said to be (C1.Npq) summable to s(x) if
tCN
n → s(x) as n → ∞.

We can easily seen that (C1.Npq) method is regular.

In this paper, we have determined the degree of approximation for the func-
tions belonging to the Lipα, (0 < α ≤ 1) class using Deferred-Generalized
Nörlund (Dγ

β .Npq) means of Fourier series and conjugate series of Fourier series,

where {pn} and {qn} is a non-increasing sequence.

3. Definition of Deferred Cesáro mean and its product with
Generalized Nörlund means in Lipschitz class

The Deferred Cesàro means is defined as following.
Let β = (an) and γ = (bn) be sequence of non-negative integers with conditions

(3.1) an < bn; n = 1, 2, 3, . . .

(3.2) lim
n→∞

bn = +∞

The Deferred Cesàro means, Dγ
β determined by β and γ

Dγ
β =

san+1 + san+2 + . . . . . . · · ·+ sbn
(bn − an)

=
1

(bn − an)

bn∑
k=an+1

sk

Where (sk) is a sequence of real or complex numbers.
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Taking into deferred Cesàro means Deferred generalized Nörlund (Dγ
β .Npq)

means which the product of Dγ
β means with a Npq mean are defined by trans-

formation

t
Dγ

β .Npq

n (f ;x) = t
Dγ

β .Npq

n =
1

γ − β

γ∑
k=β+1

(
R−1

k

k∑
ν=0

pνqk−νsν(f ;x)

)
.

and similarly; (Dγ
β .Npq) means of conjugate Fourier series are given transforma-

tion

t̃
Dγ

β .Npq

n (f ;x) = t̃
Dγ

β .Npq

n =
1

γ − β

γ∑
k=β+1

(
R−1

k

k∑
ν=0

pνqk−ν s̃ν(f ;x)

)
.

This results related to trigonometric approximation of function belonging to Lip-
schitz class by the Dγ

β .Npq means of it’s Fourier series. The second result states
the degree of approximation to conjugates of function belonging to Lipschitz
class by the Dγ

β .Npq means of conjugate series of Fourier series.

4. Lemmas

We prove following lemmas for the proof of main theorems.

Lemma 4.1. If Rn is positive and R−1
n ≥ R−1

n+1 for every n ≥ 0. Then for
0 ≤ β < γ ≤ ∞; 0 < t ≤ π. and for any n, we have∣∣∣∣∣∣

γ∑
k=β

R−1
k ei(n−k)t

∣∣∣∣∣∣ =
{
O(t−1); β

O(t−1R−1
β ); β ≥ τ

Where τ = [t−1] denotes the integer part of 1/t.

Lemma 4.2. Let {pn} and {qn} be a non-negative sequence and {αn} ∈ £+

with nαn = O(1), For π
γ−β < t ≤ π.

We have

(i).

∣∣∣∣∣∣ 1

2π(γ − β)

γ∑
k=β+1

R−1
k

k∑
ν=0

pνqk−ν
sin (k − ν + 1/2)t

sin(t/2)

∣∣∣∣∣∣ = O

(
τ2

γ − β
+ τ

)

(ii).

∣∣∣∣∣∣ 1

2π(γ − β)

γ∑
k=β+1

R−1
k

k∑
ν=0

pνqk−ν
cos (k − ν + 1/2)t

sin(t/2)

∣∣∣∣∣∣ = O

(
τ2

γ − β
+ τ

)
Proof (i) -∣∣∣∣∣∣ 1

2π(γ − β)

γ∑
k=β+1

R−1
k

k∑
ν=0

pνqk−ν
sin (k − ν + 1/2)t

sin(t/2)

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣ 1

2π(γ − β)

τ∑
k=β+1

R−1
k

k∑
ν=0

pνqk−ν
sin (k − ν + 1/2)t

sin(t/2)

∣∣∣∣∣∣
+

∣∣∣∣∣ 1

2π(γ − β)

γ∑
k=τ+1

R−1
k

k∑
ν=0

pνqk−ν
sin (k − ν + 1/2)t

sin(t/2)

∣∣∣∣∣
= M1 +M2

By Jordan’s inequality we can write (sin(t/2))−1 ≥ π
t ; for

π
γ−β < t ≤ π.

Therefore,

M1 ≤ 1

2π(γ − β)

τ∑
k=β+1

R−1
k

k∑
ν=0

pνqk−ν
1

|sin(t/2)|

=
1

2t(γ − β)

τ∑
k=β+1

R−1
k

k∑
ν=0

pνqk−ν

=
1

2t(γ − β)

τ∑
k=β+1

R−1
k

k∑
ν=0

Rk

=
1

2t(γ − β)

τ∑
k=β+1

1

=
1

2t(γ − β)
τ

(4.1) M1 = O

(
τ

(γ − β)
τ

)
= O

(
τ2

(γ − β)

)

M2 =

∣∣∣∣∣ 1

2t(γ − β)

γ∑
k=τ+1

R−1
k

k∑
ν=0

pνqk−ν sin (k − ν + 1/2) t

∣∣∣∣∣
=

(
1

2t(γ − β)

) ∣∣∣∣∣
γ∑

ν=0

pνqk−ν

γ∑
k=τ+1

R−1
k sin (k − ν + 1/2) t

∣∣∣∣∣
Let us divide in to two part of the last sum. Thus we have

M2 ≤ 1

2t(γ − β)

∣∣∣∣∣
τ+1∑
ν=0

pνqk−ν

γ∑
k=τ+1

R−1
k sin (k − ν + 1/2) t

∣∣∣∣∣
+

1

2t(γ − β)

∣∣∣∣∣
γ∑

ν=τ+1

pνqk−ν

γ∑
k=τ+1

R−1
k sin (k − ν + 1/2) t

∣∣∣∣∣
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=
1

2t(γ − β)
(M21 +M22)

First of all let us estimate M21. By elementary calculation , we have

M21 ≤
τ+1∑
ν=0

pνqk−ν

∣∣∣∣∣
γ∑

k=τ+1

R−1
k ei(k−ν)teit/2

∣∣∣∣∣
=

τ+1∑
ν=0

pνqk−ν

∣∣∣∣∣
γ∑

k=τ+1

R−1
k ei(k−ν)t

∣∣∣∣∣
Therefore by lemma (4.1) we get

(4.2) M21 ≤
τ+1∑
ν=0

pνqk−νO
(
τR−1

τ+1

)
= Rτ+1O(τR−1

τ+1) = O(τ)

Now, let us consider the second sum. Taking into account of Abel transfor-
mation. We obtain

γ∑
k=ν

R−1
k sin(k − ν + 1/2)t

=

γ−1∑
k=ν

(
∆R−1

k

) k∑
m=0

sin(k − ν + 1/2)t+R−1
γ

γ∑
m=0

sin(k −m+ 1/2)t

−R−1
ν

ν−1∑
m=0

sin(k −m+ 1/2)t

Where ∆R−1
k = R−1

k −R−1
k+1,

by using
∑µ

k=λ e
(−ikt) = O(t)

For k ≥ 0, and then {Rn} is non-decreasing sequence, we have∣∣∣∣∣
γ∑

k=ν

R−1
k sin(k − ν + 1/2)t

∣∣∣∣∣
≤

γ−1∑
k=ν

∣∣∆R−1
k

∣∣ ∣∣∣∣∣
k∑

m=0

sin(k − ν + 1/2)t

∣∣∣∣∣+R−1
γ

∣∣∣∣∣
γ∑

m=0

sin(k −m+ 1/2)t

∣∣∣∣∣
+R−1

ν

∣∣∣∣∣
ν−1∑
m=0

sin(k −m+ 1/2)t

∣∣∣∣∣
(4.3) = O(t)

(
γ−1∑
k=ν

∣∣(∆R−1
k

)∣∣+R−1
γ +R−1

ν

)
= O(t)

(
R−1

γ +R−1
ν

)
.
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Owing to (4.2) and (4.3) we get

M2 = O

(
τ

γ − β

)(
O(τ) +

γ∑
ν=τ+1

pνqk−νO(τ)
(
R−1

γ +R−1
ν

))

= O

(
τ2

γ − β

)(
1 +

γ∑
ν=τ+1

pνqk−ν

(
R−1

γ +R−1
ν

))

= O

(
τ2

γ − β

)(
1 +R−1

γ

γ∑
ν=τ+1

pνqk−ν +

γ∑
ν=τ+1

pνqk−ν

Rν

)

= O

(
τ2

γ − β

)(
1 + 1 +

γ∑
ν=τ+1

αν

)

By considering with nα = O(1) and τ = [t−1] we write

M2 = O

(
τ2

γ − β

)(
2 +

γ∑
ν=τ+1

αν

)

= O

(
τ2

γ − β

)
(2 +O (γ − τ)ατ+1)

= O

(
τ2

γ − β

)
+O

(
τ2

γ − β
(γ − τ)ατ+1

)
= O

(
τ2

γ − β
+ τ

)
Lemma 4.3. The following statements are satisfied-

(i).

∣∣∣∣∣∣ 1

2π(γ − β)

γ∑
k=β+1

(
R−1

k

k∑
ν=0

pνqk−ν
sin (k − ν + 1/2)t

sin(t/2)

)∣∣∣∣∣∣ = O ([1/t])

(ii).

∣∣∣∣∣∣ 1

2π(γ − β)

γ∑
k=β+1

(
R−1

k

k∑
ν=0

pνqk−ν
cos (k − ν + 1/2)t

sin(t/2)

)∣∣∣∣∣∣ = O ([1/t])

for 0 < t ≤ π/(n+ 1).

Proof:- Since sin(t/2) ≥ t/π. for 0 < t ≤ π/(n + 1). (Jordan’s Inequality).
We have- ∣∣∣∣∣∣ 1

2π(γ − β)

γ∑
k=β+1

(
R−1

k

k∑
ν=0

pνqk−ν
sin (k − ν + 1/2)t

sin(t/2)

)∣∣∣∣∣∣
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≤ 1

2π(γ − β)

γ∑
k=β+1

(
R−1

k

k∑
ν=0

pνqk−ν
1

|sin(t/2)|

)

=
π/t

2π(γ − β)

γ∑
k=β+1

(
R−1

k

k∑
ν=0

pνqk−ν

)

=
1

2t(γ − β)

 γ∑
k=β+1

1

 =
1

2t(γ − β)
(γ − β)

=
1

2t
= O(τ).

The proof of the case (ii) runs along the same as that of (i).

5. Main Theorems

Theorem 5.1. Let (pn) and (qn) be a non-negative sequence and αn ∈ £+
0 with

nαn = O(1). If f ∈ Lipα, then the degree of approximation by the Dγ
β .Npq means

of Fourier series is given by

∥t
Dγ

β .Npq

n − f(x)∥∞ = sup
0≤x≤2π

∣∣∣tDγ
β .Npq

n − f(x)
∣∣∣ = {O((γ − β)−α); 0 < α < 1.

O( log(γ−β)
(γ−β) ); α = 1

f(x) =
1

(γ − β)

γ∑
k=β+1

R−1
k

k∑
ν=0

pk−νqνf(x)

Proof:- since

f(x) =
1

(γ − β)

γ∑
k=β+1

R−1
k

k∑
ν=0

pk−νqνf(x)

We have

t
Dγ

β .Npq

n (f ;x)− f(x) =
1

(γ − β)

γ∑
k=β+1

R−1
k

k∑
ν=0

pk−νqν(sν(f ;x)− f(x))

Where sν(f ;x) is the partial sum of Fourier series of f .
On the other hand , we know that

s
Dγ

β .Npq

n (f ;x)− f(x) =
1

2π

∫ π

0

ϕx(t)
sin(ν + 1/2)t

sin(t/2)
dt

where ϕx(t) = f(x+ t)− f(x− t).
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Therefore we write

t
Dγ

β .Npq

n (f ;x)− f(x)

=
1

(γ − β)

γ∑
k=β+1

R−1
k

k∑
ν=0

pk−νqν

(
1

2π

∫ π

0

ϕx(t)
sin(ν + 1/2)t

sin(t/2)
dt

)
(1)

=

∫ π

0

ϕx(t)
1

2π(γ − β)

γ∑
k=β+1

R−1
k

k∑
ν=0

pk−νqν
sin(ν + 1/2)t

sin(t/2)
dt

=

∫ π

0

ϕx(t)
1

2π(γ − β)

γ∑
k=β+1

R−1
k

k∑
ν=0

pνqk−ν
sin(k − ν + 1/2)t

sin(t/2)
dt

Let us divide into two parts the integral. Thus we have

t
Dγ

β .Npq

n (f ;x)− f(x)

=

[∫ π/(γ−β)

0

+

∫ π

(π/(γ−β))

]
ϕx(t)

1

2π(γ − β)

γ∑
k=β+1

R
−1
k

k∑
ν=0

pνqk−ν
sin(k − ν + 1/2)t

sin(t/2)
dt

I1 + I2

Firstly let consider I1

|I1| ≤
∫ π/(γ−β)

0

|ϕx(t)|

∣∣∣∣∣∣ 1

2π(γ − β)

γ∑
k=β+1

(
R−1

k

k∑
ν=0

pνqk−ν

)
sin(k − ν + 1/2)t

sin(t/2)

∣∣∣∣∣∣ dt
Since f(x) ∈ Lipα, we know that ϕx(t) ∈ Lipα. Therefore, from lemma 4.3 -(i)
we have

|I1| =

∫ π/(γ−β)

0

|ϕx(t)|

∣∣∣∣∣∣ π/t

2π(γ − β)

γ∑
k=β+1

1

∣∣∣∣∣∣ dt
= O

(∫ π/(γ−β)

0

π/t

2π(γ − β)
.(γ − β) |tα| dt

)

(5.1) = O

(∫ π/(γ−β)

0

|tα| 1
t
dt

)
= O((γ − β)−α)

Now let us consider I2. By using Lemma 4.2-(i) and ϕx(t) ∈ Lipα we obtain

|I2| = O

(∫ π

π/(γ−β)

tα
(

τ2

γ − β
+ τ

)
dt

)

= O

(∫ π

π/(γ−β)

tα
(

τ2

γ − β

)
dt

)
+O

(∫ π

π/(γ−β)

tα.τdt

)
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= O(I12 ) +O(I22 )

Hence we get

I12 =
1

(γ − β)

∫ π

π/(γ−β)

tα−2dt =

{
O ((γ − β)−α) ; 0 < α < 1.

O
(

log(γ−β)
(γ−β)

)
; α = 1

and

I22 =

∫ π

π/(γ−β)

tα−1dt = O((γ − β)−α).

Taking into account 1/(bn − an) ≤
(

log(bn−an)
(bn−an)

)
for sufficiently large values of n

and combining the last results, we obtain

(5.2) |I2| =

{
O ((γ − β)−α) ; 0 < α < 1.

O
(

log(γ−β)
(γ−β)

)
; α = 1

According to (5.1)and (5.2), we have∣∣∣tDγ
β .Npq

n − f
∣∣∣ = |I1 + I2| =

{
O ((γ − β)−α) ; 0 < α < 1.

O
(

log(γ−β)
(γ−β)

)
; α = 1

Therefore,

∥t
Dγ

β .Npq

n − f(x)∥∞ = sup
0≤x≤2π

∣∣∣tDγ
β .Npq

n − f(x)
∣∣∣ = {O ((γ − β)−α) ; 0 < α < 1.

O
(

log(γ−β)
(γ−β)

)
; α = 1

Next theorem is related to approximation of conjugate of functions belonging
to Lipschitz class by the generalized Deferred-Nörlund mean of conjugate series
of Fourier series.

Theorem 5.2. Let {pn} and {qn} be a non-negative sequence and {α} ∈ £+
0

with nα = O(1). If f ∈ Lipα with 0 < α ≤ 1.Then the degree of approximation

of the conjugate function f̃ by the
(
Dγ

β .Npq

)
means of the conjugate series of

Fourier series is given by

∥t̃
Dγ

β .Npq

n − f̃(x)∥∞ =

{
O ((γ − β)−α) ; 0 < α < 1.

O
(

log(γ−β)
(γ−β)

)
; α = 1

Proof:- We know that

S̃n(f ;x)− f̃ =
1

2π

∫ π

0

ϕx(t)
cos(n+ 1/2)t

sin(t/2)
dt

where ϕx(t) = f(x+ t)− f(x− t).
Therefore the proof is done similar to the theorem (5.1) taking into account

Lemma (4.2)-(ii) and Lemma (4.3)-(ii).
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Remark 5.1. If we consider {qn} = 1 in these results then, the results of

DEG̃ER and BAYINDIR [23] become the particular cases of our results.
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