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DECISION MAKING USING CUBIC HYPERSOFT TOPSIS
METHOD

A. BOBIN*, P. THANGARAJA, H. PRATHAB AND S. THAYALAN

ABSTRACT. In real-life scenarios, we may have to deal with real numbers
or numbers in intervals or a combination of both to solve multi-criteria
decision-making (MCDM) problems. Also, we may come across a situation
where we must combine this interval and actual number membership values
into a single real number. The most significant factor in combining these
membership values into a single value is by using aggregation operators or
scoring algorithms. To overcome such a situation, we suggest the cubic
hypersoft set (CHSS) concept as a workaround. Ultimately, this makes
it simple for the decision-maker to obtain information without misconcep-
tions. The primary aim of this study is to establish some operational laws
for the cubic hypersoft set, present the fundamental properties of aggrega-
tion operators and propose an algorithm by using the technique of order
of preference by similarity to the ideal solution (TOPSIS) technique based
on correlation coefficients to analyze the stress-coping skills of workers.
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1. Introduction

Zadeh [1] defined the logic of fuzzy set (FS), to handle uncertainty in science.
This structure’s generalization and several theoretical extensions enabled the re-
searchers to use FS in various domains. It contains generalizations like interval-
valued FS (IVFS)[2], intuitionistic FS (IFS) [3] and cubic set [4]. Molodsov’s
[5] introduction of the soft set (SS) resulted in parameterizing the universal set.
To get around the limitations of SS, Smarandache [6] introduced the idea of a
hypersoft set (HSS). Chinnadurai et al. [7] suggested a cubic soft matrix (CSM)
for ranking the alternatives. Chinnadurai and Bobin [8] proposed reversing the
ranking approach and employing max-min operations in CSM. In addition to
using the TOPSIS approach to address multi-criteria decision-making (MCDM)
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issues, Zulgarnain et al. [9], [10] also proposed the ideas of intuitionistic hyper-
soft sets and Pythagorean hypersoft sets. The existing works of [11], [12], [13]
and [14] explains the concept of TOPSIS technique in detail .

When the grades are a combination of interval and actual number grades for
the provided qualities, CHSS proves to be a reliable method for predicting un-
certainty. We present this study to show the significance of CHSS. To analyze
the options based on cubic HSS (CHSS) data, we use aggregation operators and
the TOPSIS technique based on correlation coefficient (CC). The whole field
of study pertains to CHSS theory, associated development, and applications.
Therefore, decision-makers assess the innovative technique proposed in this re-
search and provide a practical solution. Furthermore, by applying the CHSS
TOPSIS technique, we offer an appropriate workaround for analyzing workers’
stress-coping abilities.

2. Preliminaries

Let X represent the universe, x; € X, P(X) be power set of X', N denote
natural numbers. Let the closed interval of real numbers be denoted as [0,1].
C[0,1] represent closed sub intervals of [0,1] and CY be cubic set (CS) over X.

Definition 2.1. [4] A CS is represented as ¢ = {<I€¢($),K¢(x)>,x € X},
where Kg(z) : X = C[0,1], Kg(z) : X — [0,1] . Kg(z) denote sub interval
membership grades and Kg(z) represent the membership grades of the element
x € X. The lower and upper grades of Kg(z) are given by Kg(z) and Kg(z).

Definition 2.2. [6] Let 01, da, ..., 0k, be attribute sets. The sub-attributes are
01 = {Au, Alg, ey Alp}, Oy = {Agl, AQQ, ey qu}7 ey 0 = {Aklu Akg, ey Akr}a
where 1 < p <z, 1 <¢g<y, 1 <r<zandz y, 2z €N, §nd =0,
i, €{1,2,...,k} and i # j. Cartesian product of the attributes 1 x da X ... X J), =
5 = {A1p x Agq X ... X Ak, }, denote set of multi- attributes. A pair (&, 5) is
called hypersoft set (HSS) over V, if there exists a mapping @ : 6 — P(X) and

denoted as (&,0) = {(A,@(A))\A €0,8(A) e P(X)} :

3. Cubic hypersoft set

We provide the definition of cubic hypersoft set (CHSS) and few properties
of CC and weighted CC (WCC) of CHSS.
Definition 3.1. A pair (9, 5) is called a CHSS over X, if there exists a mapping
@ : 6 — CU. CHSS can be represented as (&, 6) = {(A~7€ZS(A~))|A~ €0,P(A) e CU},
where $(A) = {<I€¢<A~)(I)~, ICQ(A)(m)>|m € X}, where K‘P(ﬂ)(x) X — C0,1],
Kgay(@) + X = [0,1]. Kgz)(x) represent closed sub intervals of [0,1] and
Ko A)(x) denote the membership grades of the element x € X. The lower and
upper ends of 16(1)(5)(1‘) are given as Kg 4 (2), Ké(j) ().
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3.1. Correlation coefficient of CHSS. Let the two CHSS over X be as below:

(®1,81) ={(=4, (] Koy (a,) (@), Kay (4, (@) K, (4, (i) fand
(952’52) :{(Ii5<[&¢2(Ak)($l)7K@2(Ak)( z)]”Cqu(Ak)(fL’z»}

Definition 3.2. The cubic informational energies of (@1,51) and (4')2,52) are
represented as

@(451,51) =S¥ [(&q"l(jk)(xi))Q + (Edq(dk)(wi))z <?1(Ak)(a:1)) :| (1)
B2, 62) =y Ty [ (g2, 000)° + oy sy @)+ Koy, @0 @)
Definition 3.3. The correlation measure between (@1,8;) and (P,,d2) can be

represented as

ax((P1,81), (P2,82)) =X, T7, [(Lpl(gk)(wi)) # Koy ay) (@) + Koy (a,)(@) * (Kg, (4, (@)
+ (’CQI(A,C)(111)) * (’C@z(jk)(mi))} (3)

Proposition 3.4. Let (@1,51) and (@2752) be two CHSS. Then,
(i) ax((P1,61), (P1,01)) = (P, 61)
(ii) axc((P2,02), (P2, 02)) = P(P2, d2).

Proof. Straight forward O

Definition 3.5. The CC between (@1751) and (Pa, 52) is represented as

ax((81,81), ($2,52))
\/<I>(<131, 51)\/<I>(¢2, 52)

Proposition 3.6. The following CC properties hold good for the CHSS (P4, 51)
and (9o, 52)
(i) 0 < ac((®1,01), (22, 82)) < )
(ii) ac((P1,01), (B2,0)) = Oéc((@zvfsz) (P1,61));
(111) If (D1, 61) = (P2,02), then ac((P1,01), (P2,d2)) =1
Proof. (1)We know that, ac((@1, 51)1 ($2,05)) >0
So, let’s show that ac((®1,01), (P2,d2)) <1
ac((@1,61), (B2,62))
ST [y (30 000) * Ky (@0) + (R (1) (@0) % (Ropy 3, 00)

ac((P1,81), (P2,62)) =

(4)

Ky (30 @) * Koy 2, ()]

=57 [ (30 @10+ By 2 (01) + Ry 3, 0)) * oy ()

Ky (3 @) * Koy 1, (@)
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+ ((E@l(jk)(IQ)) * (E452(A"k)(12)) + (E¢-1(A"k)(w2)) * (E¢2(Ak)(z2))
+ (K, s, (@2) * (K¢2<A~k)<m2>>) +..
(g @0) * a3, (0)) + (Fop, (3, 0) * oy 5, ()

Ky (3 @0)) * Koy, )]
By using Cauchy-Schwarz inequality
ag((P1,01), (P2,02))*
< 27 ({2 000 + Ky @027 4 4 (K5, )}

+ {(E¢1(A~k)<x1))2 Ry @) + et (Kq,l(jk)(xn)f}

+ {(lc(,,l(dk)(xl)f +(Kgyap @)+ + (K‘i,l(dk)(xn))z}}
X Eis |:{(£4’2(5k)(11))2 + (&‘Pﬂﬁk)(wz))z et (Eq’z(dk)(wn))z}

* {(K%m‘m(ml)f + Ry (ay) (@) + oo+ (E‘Pz(Ak)(xn))z}

+ {(fc%(Ak)(wl))Z + Ky (ag) (@) + o+ (zc%dk)(zn>>2}}
OéK((gpla gl)’ (¢2? 82))2
< S P [y 2y 000 + Ry @)+ (Ko (3,00’

X DL B [(&vpg(dk)(mi))z + (Eéz(ﬁk)(zi))2 + (’C¢2(Ak)($i))2]-
= ag((®1,01), (Pa,09))? < B(P1,01) x B(Da, 02).
= ag((P1,01), (P2,02)) < \/‘I’(¢1751) X \/(I)(Qj%SQ)'
ax (($1,61),(P2,02)) <1
VO(B1,51)x\/®(P2,65) — ) )
By Definition 3.5, ag((¢1,51~), (P2,02)) < 1.
Hence, 0 < ac((®1,01), (P2,02)) < 1.

Proof. (ii) Straight forward.

Proof. (i) ac(®1.81), (2, 5)) = —2elthubhet)
Since, (€1,01) = (P2, 02).
ac((P1,01), (P2, 52))

SRl [ (3 @00 + Ry 2, (@00 +(Kipy 3,000’

ﬂzzzlzrzl [y @) + Koy @) 4Ky 5, (@) |

x ﬂzz;lxz;l (a2 @) + Ray ) @) 4Ky 5, (@02 |
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éac((@hgl),(éz,gg))il. O

Definition 3.7. Let ($1,61) and (®2,0,) be two CPFHSS. Then, the CC be-
tween (@1, d1) and (P202) is defined as

ax((91,61), (P2, 82)) _
max {‘P(@h 51), ®(P2, 52)}

o ((P1,01), (P2,82)) = (5)

o ((1,61), (P2, 02))

DR I [(ﬁqsl(jk)(xi)) * (E4>2(Ak)(zi)) +(E451(A~k)(xi)) * (E¢2(Ak)(xi))

+(Kg, (4, (=) * (]Cqsz(jk)(zi))}

max {22212{;1 [(ﬁél(jk)(zi))Q + (g (a,) (@)’ +<K¢1<Ak)(zi))2],
S iy [ (3, @0 + B2, @0+ Ky, @07 }
Proposition 3.8. The following CC properties hold good for the CHSS.
(i) 0 < dc((P1,61), (P2, 02)) < 1;

(i) dic((P1,01), (B2,05)) = do((2,62), (B1,01));.
(iii) If (P1,01) = (P2,02), then ac((P1,01), (P2,02)) = 1.

Proof. (i) We know that,~a~c((¢1,~51), (P2, 02)) > 0.
Let’s show that ac((P1,01), (P2,d2)) < 1.
a((®1,01), (2,02))
=7 S (K sy @0) 5 Ky sy @) + (g 5, (@) * Ry, @)

F Ky (50 @) * Koy 2, ()]
=2 [((&slmw(zl)) 5 (Ko ap) (@) + Ko,y (4, (@1)) * Koy s, (@1)
F Ky (3 @000) 5 (K 3 (01))
(a2 @20) * (a5, @20) + Ropy (5 02)) = Koy 5, (02)

F (o @20) % (g @20)) +
+ ((Eél(jk)(zn)) * (&¢2(A_k)($n)) + (qul(A"k)(In)) * (quz(A"k)(In))
+ (Krpl(jk)(xn)) * (’Crp2(jk)($n)))] .

By Cauchy-Schwarz inequality,
ark((@1,01), (P2,02))
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< Lo [{ a0 @00 + (a5, 020 o+ (K 5, @)
{ Ry @)% + Ry 1) @) o (Rogy 5, o))
{0y @)+ (K 2, @) ot (Ko 5 @) ] %
S [{ U @)+ (a2, @) + o (K s @)}

{ Ry @)% + Ry ) @) o Ropys, o))}

N

* {(’C%(A‘m(zl))z+(’C¢2<A"k)($2))2+~~'+(’C¢2<A"k>(w”))2}” '
ag((D1,61), (P2,52))
<9 Tem Ty (ﬁél(dk)(wi)fJF(Eqsl(A"k)(“:i))Q+(K¢1(A"k)(wi))2]

X I [ Ry iy @)+ Roaga, @) + Kopy s, @00 }7

< { (ma{ s 2 [0, (3,0 @) + Ry @)+ (K (3, @)
X TSI [y ) (0 + Fopy s, (000 + <K¢2(A~k><m)2}%.

= max{ S S0 [y ) @)+ Fopy (3, @) + (Ko, 2,00

X S I | (R s @)+ Rz, (@) + Kpys, @)?] ]

= ag((P1,01), (Pa,0)) < max{¢(¢1,51) X @(@z,&)}.

@ QK((él,Sl),(ég,gg)) < 1

max @(@1751)X¢>(¢’2,Sz)}

By Definition 3.7, aic:((®1,61), (2, 62)) < 1.
Therefore, 0 < dic((P1,61), (P2,02)) < 1.
Refer Proposition 3.6 for Proofs of (ii) and (iii). O

3.2. Weighted correlation coefficient of CHSS. Weighted correlation co-
efficient (WCC) of CHSS are given in this section. Decision makers (DMs) use
WCC to enable various weight values for criteria. Consider the weight vectors
of alternatives and experts P = {P1, P2, ..., P} and W = {Q1,Qs,..., 9y},
Pr, Qi >0and X7 P, = 1,50, Q; = 1, respectively.

Definition 3.9. Let ($1,4) and (3, 05) be two CHSS. Then, the WCC between
(®1,01) and (Ds, d2) is defined as

oy (@1, 81), (2, 52)) = S B100): (F2.02)

_ (©)
Ve@1,5)y/0(@s,52)
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acy, ((21,61), (P2, 02))
Pk (2{’/:191- [Eq;.l(ﬁk)(zi) * Koo (4, (@) +E¢1(A-k)(wi) *E%(jk)(wi)

Koy (00) * Koy 5, (00 )

ﬂz}lem (51001 [0y 3 00007 + Ry (2 (@) +0g, 5,00 ) |

« ﬂzg;lm (51001 [ (a5, (0007 + Ry 5, (000 +Knys, @] ) |

Proposition 3.10. WCC properties hold good for CHSS.

(i) 0 < acy, ((@1,81), ($2,5)) < 1; ]

(i) oy, ((P1,01), (P2,02)) = acy, (P2, 62), (P1,01));

(i1i) If (®1,01) = (P2, 02), then ac,, ((P1,61), (P2,02)) = 1.

Proof. Refer Proposition 3.6. O

Definition 3.11. The WCC between (¥1,6;) and ($205) is defined as

ax(($1,81), (P2, 32)) _
max {<I>(451, 51)7 (P2, 52)}

Ay, ((B1,81), (P2, 62)) =

acy, (21, 61), (92,52))

S P (Z @ (K (4 (50) * (3 00) + oty 3, (800) % Koy (@)

oy (3 @0) ¢ Koy, @00 )

max{ 27, P (21001 [0, (5, @00 + Ry 3, @0 + (Ko 5 @0))?] ).

=1 P (2?:197’ [(E‘szk)(‘”i))z + Koy (a) (@) +(’C4’2<Ak>(’”’i))2} ) }
Proposition 3.12. The following WCC properties hold good for CHSS:
(1) 0 < acy, ((1,61), (P2,62)) <1; 3
(ii) acy, (<¢~17 o1), (¢2’§2)> = agy, (P2, 62)3 (P4, 61));
(ZZZ) If (@17 (51) = (@2, 52), then aéw((él, (51), (@2752)) =1.

Proof. Similiar to Proposition 3.6. (|

4. Aggregation operators of CHSS

Cubic hypersoft weighted average (CHSWA) and cubic hypersoft weighted
geometric (CHSWG) operators by using operational laws are presented. Let p
denote cubic hypersoft numbers (CPFHSNs).

4.1. Operational laws of CHSS.

Definition 4.1. Let @ell = <[E11,K11],]C11> and @612 = <[E12,K12],K12>) be
CHSSs and § represents an integer. Then,

(i) Bey, BPeyy = ([K11+K15—K 11 Ko, K11+K12—K11K12], (K11 +K12—K11K12) );
(H) Qseu ®@812 = <[E11£127K11E12]7 (]C11’C12)>;
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(i) 60e,, = ([(1— (1= Kq11)°, (1= (1= K1)’], (1 = (1 = K11)*)s
(iv) (@e,,)° = ([(K11)%, (K11)°], (K11)°).

4.2. Cubic hypersoft weighted average operator.

Definition 4.2. Let P, and Q; be weight vectors for alternatives and experts,
with conditions that Py, Q; > 0 and X7* P, = 1,27,9; = 1 and &, =
([Kir, Kir], Kit) be a CHSN, where i = {1,2,..n}, k = {1,2,..m}. Then,
A:p" — p, CHSWAO is represented as

A(@Gn ) @612a ) gp@nm) = @?:1 Py ( @?:1 Qi@ﬁik) :

Theorem 4.3. Let D.,, = ([Kiy, Kix], Kir) be a CHSN, where i = {1,2,...n},
k={1,2,..m}. Then, the aggregated value of CHSWAO is also a CHSN, which
is given by

APy, Peynyevey Pe,)

m n Ql Pk m n e w Pk

= (i () 7)o (s (=) 1)
WA P
1_H;R:I<H?:1<1_’Cik> ) >

Proof. Proof is similar to the Theorem 4.3 in [11] O

4.3. Cubic hypersoft weighted geometric operator.

Definition 4.4. Let Py and Q; be alternatives and experts weight vectors, with
conditions that Py, Q; > 0 and X7, Pr = 1,27 ,9, =1 and &, = (Ki,Eix)
be a CHSN, where i = {1,2,...n}, k = {1,2,...m}. Then, G : p" — p, CHSWGO

i\ Pk
is defined as G(@o,,, B, .. Do, ) = ;:_1<®;L 1 (qs) ) .

Theorem 4.5. Let D, = ([K;,,Kir], Kix) be a CHSN, where i = {1,2,...n},
k=1{1,2,..m}. Then, the aggregated value of CHSWGO is also a CHSN, which
s given by

g(gpellvdsema Qj

)’ T Enm

i\ Pk _ i\ Pk i\ Pk
o (s (s (2 e ) )

Proof. Proof is similar to the Theorem 4.3 in [11] O

5. MCDM problem by using TOPSIS method

Based on the minimum and maximum distances from the cubic positive ideal
solution (CPIS) and cubic negative ideal solution, the TOPSIS technique as-
sists in determining the optimum alternative (CNIS). Additionally, the TOPSIS
technique accurately estimates the proximity coefficients when paired with CC
rather than DMs. Finally, we present a case study to demonstrate CHSS TOP-
SIS method.
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5.1. Algorithm to solve MCDM problems with CHSS data. Let W =
{Wl,Wz,...,WI} represent a set of workers. Let X' = {p1,pa,...,pn} denote
psychiatrists responsible to handle psychiatrist session with the workers. Let
the weights be given as Q; = (Q1,Q2,...,Q,), Q; > 0 and X, Q; = 1.
Let § = {Al,Ag,...,A } be multi-valued sub-attributes with weights P, =
(P1,Pay.c Pm), P, > 0 and Xy P, = 1. The assessment of workers A’
(t = 1,2,...,z) performed by the psychiatrists p;, (i = 1,2,...,n) based on the
multi-valued sub-attributes Ay, (k=1,2,...,m) are given in CHSS form, repre-
sented as pf, = <[ka,ffk] Kt

Step 1. Create multi-valued sub-attrlbute in CHSS format:

Al AQ Am

P1 H11 H12 H1im

¢ ~ " p2 21 K22 e H2m
[W ;5]n><m == [W }nxm - : : : .. : )

Pn Hn1 Hn2 e Hnm

such that W, xm = pt, = <[ICZk,K Wy Kh),i=1,2,..,nand k=1,2,..,m
Step 2. Compute the weighted decision matrix for each multi-valued sub-attribute,
[Wztk]nxm

i\ Pk _ i\ Pr
(e (o (-2 ) s 1))
i\ Pk
v (i (1-7a) 7))
:<|:E;kvz~ik:|alc~ik>-

Step 3. Evaluate the CPIS and CNIS for weighted CHSS according to the in-
structions below:
W= m )

(EEl) L
:<[E(Aij)7f(/\ij):|’]€(/~\ij)>7

where V;; = arg max, {¢};} and Ay; = arg min, {¢};}.
Step 4. Compute the CC for every possibility using CPIS and CNIS.

25,

t =t 1% @ (Wt W+)
x" = ac(W ,W+) K

¢ VE(W) % /(@ +)
(W W™)

A/ B(WE) % 4/ D(W )

Step 5. Compute the similarity coefficient of the cubic ideal solution using the

Al = Ozc(VVt,VVi) =
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FIGURE 1. Flowchart of the proposed method

+* Construct in CHSS form for each attributes

+ Obtain the weighted decision matrix

» Determine the CPIS and CINIS

* Determine the correlation coefficient for each alternative

+ Compute the closeness coefficient

* Determine the rank of the alternatives

b N —? Nm— \— Ne—

HLKUUL

formula below:
. 1— At

€ =5 Y — A
Step 6. Compare the € scores to the norms provided in Table 1 and assess the
amount of stress coping for each alternative A, (t = 1,2,...,x). To manage

stress, an individual with low stress coping abilities may need the assistance of
a psychiatrist.

TABLE 1. Stress-coping norms.

Scores Level
0-0.55 Low
0.56-0.70  Average

0.71-0.90 Good
0.91-1.00 Excellent

The graphical representation of the proposed method is given in Figure 1:

5.2. Application to analyze the stress-coping skills of workers us-

ing TOPSIS method. Let W = {Wl,WQ,W3,W4} be a set of workers.

Let X = {p1, p2, ps,pa} represent psychiatrists for conducting sessions and the

weights be Q; = (0.16,0.28,0.34,0.22) and P}, = (0.26,0.32,0.14,0.28) . Let

01, 02, 03 and d4 denote attribute sets. The respective sub-attributes are given

below:

01 = first stage = { A1 = reactivity to stress},

02 = second stage = { Ay = ability to relax, Azy = self-reliance},

03 = third stage = {A31 = proactive attitude, Azs = adaptability and flexibility}
and
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04 = fourth stage = {A4; = ability to access situations}. Then 5 =8, X 9y ¥
03 X 04 is the distinct attribute set given by
S =081 X 02 X 03 X 04 = {All} X {Azl,Azz} X {A31,A32} X {A41}'
:{(411> Az, Az1, Agr), (A1, A21, Azz, Agr), (Arr, Az, Az, Agr), (A1, A2z, Aza, 441)}‘
{41 40, 40, A1}
We provide a workaround for a worker who may require the help of a psychiatrist
to handle the stress effectively.

Step 1. Construct W', W2, W3 and W* for each multi-valued sub-attribute in
CHSS format.

TABLE 2. W! values expressed in CHSS format.

Wl Aq Ay

p1 {([0.64,0.66],0.49) ([0.91,0.92],0.81)
p2  {[0.72,0.75],0.55)  ([0.52,0.56],0.25)
ps  ([0.41,0.45],0.72)  ([0.77,0.79],0.81)
ps  ([0.92,0.93],0.56) ([0.77,0.79],0.71)
wi As Ay

p1 ([0.36,0.42],0.57)  ([0.48,0.59], 0.69)
p>  ([0.73,0.75],0.55) ([0.81,0.83],0.23)
ps  ([0.42,0.46],0.56)  ([0.34,0.37],0.41)
ps  {[0.58,0.62],0.49) ([0.54,0.57],0.64)

TABLE 3. W? values expressed in CHSS format.

W2 Aq Ay

p1 ([0.35,0.41],0.55)  ([0.56,0.61],0.71)
p2 ([0.21,0.25],0.32)  ([0.51,0.53],0.24)
ps  ([0.43,0.48],0.45) ([0.35,0.39],0.43)
ps  ([0.57,0.64],0.65) ([0.55,0.59],0.66)
W2 As Ay

P1 0.84,0.91], 0.83) 0.91, 0.94], 0.52)

P3 0.21,0.24],0.74)

([0. . (
pa  ([0.48,0.55],0.24) ([0.71,0.76],0.58)
( (
pa ([0.74,0.75],0.58)

TABLE 4. W3 values expressed in CHSS format.

w3 Ay A,

1 ([0.46,0.61],0.71)  ([0.61,0.62],0.47)
pa  ([0.14,0.17],0.22)  ([0.16,0.17],0.57)
ps  ([0.15,0.21],0.43)  ([0.21,0.27],0.77)
ps  {[0.52,0.59],0.66) ([0.34,0.48],0.57)
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W3 As Ay

p1 ([0.39,0.44],0.54) ([0.51,0.61],0.68)
p2  ([0.24,0.29],0.34)  ([0.16,0.19],0.29)
ps  ([0.46,0.49],0.44)  ([0.38,0.39],0.44)
ps  {[0.62,0.63],0.64) ([0.57,0.59],0.67)

TABLE 5. W?* values expressed in CHSS format.

w Ay A,

1 ([0.89,0.92],0.79)  ([0.84, 0.92], 0.88)
p>  ([0.51,0.56],0.24) ([0.48,0.56],0.26)
ps  ([0.75,0.79],0.33)  ([0.72,0.77],0.44)
ps  {[0.45,0.46],0.56) ([0.81,0.82],0.61)
W4 As Ay

p1 {[0.56,0.60],0.77)  ([0.31,0.44], 0.58)
p2  {[0.89,0.94],0.25)  ([0.35,0.39],0.38)
ps  ([0.35,0.49],0.44) ([0.41,0.47],0.48)
ps  ([0.55,0.69],0.67) ([0.51,0.65],0.68)

Step 2. Obtain W', W2, W3 and W*, the weighted matrices for each multi-
valued sub-attributes.

TABLE 6. Weighted value representation in CHSS for W*.

Wi Ay A,
p1 ([0.0416, 0.0439], 0.0276) _ ([0.1160, 0.1213], 0.0815)
p2  ([0.0885,0.0960],0.0565) ([0.0636,0.0709],0.0254)
( (
( (

P3 0.0456, 0.0515], 0.1064) 0.1478,0.1562], 0.1653)
P4 0.1345,0.1411], 0.0459) 0.0983, 0.1040], 0.0835)

Wi As As

p1 ([0.0099, 0.0121],0.0187)  ([0.0289, 0.0392], 0.0511)
pa  ([0.0500,0.0529],0.0308)  ([0.1221,0.1297],0.0203)
ps  ([0.0256,0.0289],0.0383)  ([0.0388,0.0430], 0.0490)
ps  ([0.0264,0.0294],0.0205) ([0.0467,0.0507],0.0610)

TABLE 7. Weighted value representation in CHSS for W2.

W? Ay As
P1 ([0.01780.0217],0.0327)  ([0.0412,0.0471], 0.0614)
P2 ([0.01700.0207],0.0277)  ([0.0619, 0.0654], 0.0243)
p3 ([0.04850.0562],0.0515)  ([0.0458, 0.0524], 0.0593)
P4 ([0.04710.0568], 0.0583)  ([0.0547,0.0608], 0.0731)
W2 Asg Ay
P1 ([0.0402, 0.0525],0.0389)  ([0.1023,0.1184],0.0323)
P2 ([0.0253,0.0308],0.0107)  ([0.0925,0.1059], 0.0658)
3 ([0.0588,0.0695],0.0210)  ([0.0222,0.0258],0.1204)
Ppa ([0.0374,0.0418],0.0264)  ([0.0796, 0.0819], 0.0520)
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TABLE 8. Weighted value representation in CHSS format for

W3,

W3 Ay Ay

p1 ([0.0253,0.0384],0.0502)  {[0.0471, 0.0483], 0.0320)
ps  ([0.0109,0.0135],0.0179)  ([0.0155,0.0166], 0.0728)
ps  ([0.0143,0.0206],0.0485)  ([0.0253,0.0337],0.1478)
pa  {[0.0411,0.0497],0.0598)  ([0.0288,0.0450], 0.0577)
W3 Asg Ay

p1_ ([0.0110,0.0129],0.0172) _ {[0.0315, 0.0413], 0.0498)
po  ([0.0107,0.0133],0.0162)  ([0.0136,0.0164], 0.0265)
ps  ([0.0289,0.0315],0.0272)  ([0.0445,0.0460], 0.0537)
pa__ {[0.0294,0.0302],0.0310)  ([0.0507, 0.0534], 0.0660)

TABLE 9. Weighted value representation in CHSS format for
WH.

Wi Ay Ay

p1_ ([0-0877,0.0997],0.0629) _ ([0.0896,0.1213], 0.1029)
ps  ([0.0506,0.0580],0.0198)  ([0.0569,0.0709], 0.0266)
ps  ([0.1153,0.1289],0.0348)  ([0.1293,0.1478],0.0611)
psa  ([0.0336,0.0346],0.0459)  ([0.1103,0.1137],0.0641)
W4 Asg Ay

p1_ ([0.0182,0.0239],0.0324) _ ([0.0165, 0.0256], 0.0381)
po  ([0.0829,0.1044],0.0112)  ([0.0332,0.0380], 0.0368)
ps  ([0.0203,0.0315],0.0272)  ([0.0490,0.0587], 0.0604)
pa {[0.0243,0.0354],0.0336)  ([0.0430, 0.0626], 0.0678)

Step 3. Evaluate the CPIS and CNIS from WL W2 V3 and WA,

TaBLE 10. CPIS (V~V+) is represented by the weighted

matrices.

W+ Aq Ag

p1 ([0.0877,0.0997],0.0629) ([0.1160,0.1213],0.1029)
p2  ([0.0885,0.0960],0.0565) {[0.0636,0.0709],0.0728)
ps  ([0.1153,0.1289],0.1064) ([0.1478,0.1562],0.1653)
ps  ([0.1345,0.1411],0.0598)  ([0.1103,0.1137],0.0835)
W As As

p1 ([0.0402, 0.0525],0.0389)  ([0.1023,0.1184],0.0511)
ps  ([0.0829,0.1044],0.0308)  ([0.1221,0.1297],0.0658)
ps  ([0.0588,0.0695],0.0383)  ([0.0490,0.0587], 0.1204)
ps ([0.0374,0.0418],0.0336)  ([0.0796,0.0819],0.0678)
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TABLE 11. CPIS (W) is represented by the weighted

matrices.

%% Ay A,

p1 ([0.0178,0.0217],0.0629)  ([0.0412, 0.0471], 0.1029)
p2  ([0.0109,0.0135],0.0327) ([0.0155,0.0166], 0.0320)
ps  ([0.0143,0.0206],0.0179) ([0.0253,0.0337],0.0243)
ps  ([0.0336,0.0346],0.0348)  ([0.0288, 0.0450], 0.0593)
%% As Ay

p1 ([0.0099,0.0121],0.0389) _ ([0.0165, 0.0256], 0.0511)
p2  ([0.0107,0.0133],0.0172) ([0.0136,0.0164], 0.0323)
ps  ([0.0203,0.0289],0.0107)  ([0.0222,0.0258],0.0265)
ps  {[0.0243,0.0294],0.0210)  ([0.0430, 0.0507],0.0537)

Step 4. By using the values of CPIS and CNIS, compute the CC for the
alternatives

x! =0.9442, x* = 0.8953, x* = 0.8352 and x* = 0.9045.
A =0.7562, A2 = 0.7957, A\* = 0.8242 and \* = 0.7963.

Step 5. Derive the proximity coefficient of cubic ideal solution as below.
el = 0.8139, €2 = 0.6612, ¢ = 0.5162 and * = 0.6808.

Step 6. Compare the scores with the norms given in Table 1 and determine the
stress-coping levels.

el — Good, €2 — Average, €2 — Low and ¢! — Average.

= W! — Good, W? — Average, W? — Low and W* — Average
Hence, W3 may require the help of a psychiatrist to manage the stress effec-
tively.

6. Conclusions

We have presented the notion of CPFHSS and established a few of its features
in this study. We have presented aggregation operators and a TOPSIS-based
application for analyzing the stress-coping abilities of telecommuters. In the
suggested TOPSIS technique, we have utilized CC instead of DMs to examine
the proximity coeflficients. To demonstrate the validity of the proposed model,
we conducted a comparison analysis by replacing CC with existing DMs in the
proposed method. In the future, we can extend this structure to several aggre-
gate operators, combine CHSS with N soft set, and in various decision-making
problems.
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