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MITTAG LEFFLER FUNCTIONS ASSOCIATED WITH

FUNCTIONS THAT MAP OPEN UNIT DISC ONTO A
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Abstract. In this present work, we inaugurated subclasses of analytic
functions which are associated with generalized Mittag Leffler Functions.

Inclusion implications and integral preserving properties under the Bernardi

integral operator are investigated. Some consequences of these findings are
also illustrated.
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1. Introduction

Ma and Minda [11] gave a comprehensive and unified treatment of the classes
S∗ and C of starlike and convex functions, respectively. They considered the
class Φ of analytic univalent functions ϕ(z) with Reϕ(z) > 0 and for which ϕ(U)
is symmetric with respect to the real axis and starlike with respect to ϕ(0) such
that ϕ′(0) > 0. They initiated the following classes of functions that generalized
and unified many known subclasses of S:

S∗(ϕ) =

{
f ∈ A :

zf ′(z)

f(z)
≺ ϕ(z)

}
and

C(ϕ) =

{
f ∈ A :

(zf ′(z))′

f ′(z)
≺ ϕ(z)

}
,
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where A is the class of analytic functions f(z) of the form

f(z) = z +

∞∑
n=2

anz
n (1)

in an open unit disc U .

In particular, for ϕ(z) =
(

1+z
1−z

)η
, η ∈ (0, 1], we have the classes of strongly

starlike ( denote by S̃∗(η)) and strongly convex ( denoted by C̃(η)) functions,
respectively. These classes have analytic characterization:

S̃∗(η) =

{
f ∈ A :

∣∣∣∣arg zf ′(z)

f(z)

∣∣∣∣ ≤ π

2
η

}
(2)

and

C̃(η) =

{
f ∈ A :

∣∣∣∣arg(1 + zf ′′(z)

f ′(z)

)∣∣∣∣ ≤ π

2
η

}
(3)

were first introduced by Brannan [4] and Stankiewicz in [21]. Later, Mocanu

[14] showed that C̃(η) ⊂ S̃∗(β), where the relation between η and β were given
by transcendental equation. This result were further improved by Nunokawa in
[16] by using the Nunokawa’s Lemma. For recent work on analytic functions
associated with strongly starlike functions, see [2, 5, 6, 10, 15, 17].

Among one of the most applicable special functions is the Mitag-Leffler func-
tions (MLF) given by

E
α
(z) =

∞∑
n=0

zn

Γ(αn+ 1)
, α, z ∈ C, Reα > 0. (4)

This function was introduced and studied by Mittag-Leffler [12, 13] in relation
with his method of summation of some divergent series. In recent years, in-
terest in MLF is considerably increasing in engineering and sciences due to its
wide applications in many applied problems, such as fluid flow, probability and
statistical distribution theory. As a result, this functions has witnessed many
generalizations and modifications, ranges from two-parametric MLF to three-
parametric MLF, which was further extended by Srivastava and Tomovski [20]
and recently generalized by Jain et al [9].

Corresponding to (4), Elhaddad et al [7] initiated the Mittag-Leffler linear

operator Em,λ
α,β f : A←→ A given by

Em,λ
α,β f(z) = z +

∞∑
n=2

Γ(β)(1 + (n− 1)λ)m

Γ(α(n− 1) + β)
anz

n (z ∈ U), (5)

where m ∈ N∪ {0}, λ ≥ 0, α, β ∈ C,Reα > 0,Re, β > 0. For different choices of
α, β and m, the operator reduces to Al-Oboudi operator [1], Salagean operator
[18] and the operator studied in [19]. It is easy to see that the identity relation
associated with (5) is given by

Em+1,λ
α,β f(z) = (1− λ)Em,λ

α,β f(z) + λz(Em,λ
α,β f(z))′. (6)
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Motivated with the work presented in [7] by Elhaddad et al and the above

mentioned work linked to the classes C̃(α) and S̃∗(α), we introduce and study
the following classes of analytic functions:

Definition 1.1. Let ρ > 0, γ ≥ 0 and suppose that

Lm,λ
α,β (γ, ρ; f)(z) = (1− γ)

(
Em,λ
α,β f(z)

z

)ρ

+ γ

(
Em+1,λ
α,β f(z)

z

)(
Em,λ
α,β f(z)

z

)ρ−1

.

(7)

Then f ∈ Hm,λ,γ
α,β,ρ (η) if∣∣∣arg (Lm,λ

α,β (γ, ρ; f)(z)
)∣∣∣ ≤ π

2
η. η ∈ (0, 1]. (8)

In particular, we have the following classes of functions:

(i) For m = α = 0, λ = 1, we have

Hγ
ρ(η) =

{
f ∈ A :

∣∣∣∣∣arg
((

f(z)

z

)ρ [
1 + γ

(
zf ′(z)

f(z)
− 1

)])∣∣∣∣∣ ≤ π

2
η

}
(ii) For m = α = 0, λ = 1, γ = 1, we have

Hρ(η) =

{
f ∈ A :

∣∣∣∣∣arg
(
zf ′(z)

f(z)

(
f(z)

z

)ρ
)∣∣∣∣∣ ≤ π

2
η

}
(iii) For m = α = 0, λ = 1, ρ = 1, we have

H(η) =
{
f ∈ A :

∣∣∣∣arg((1− γ)
f(z)

z
+ γf ′(z)

)∣∣∣∣ ≤ π

2
η

}
Definition 1.2. Let f ∈ A. Then f ∈ STm,λ

α,β (η) if and only if Em,λ
α,β f(z) ∈ S̃∗(η).

Similarly, f ∈ CTm,λ
α,β (η) if and only if Em,λ

α,β f(z) ∈ C̃(η).

For m = α = 0, λ = 1, γ = 0, Definition 1.2 reduce to the classes of strongly
starlike and strongly convex functions of order η introduce by Brannan [4] and
Stankiewicz in [21], respectively.

We are set to present the main theorems of this work. As such, we need the
following Nunokawa’s Lemma.

Lemma 1.3. [16] Let a function p(z) = 1 + c1z + c2z
2 + c3z

3 + . . . be analytic
in U and p(z) ̸= 0 (z ∈ U). If there exists a point z0 ∈ U such that

| arg(p(z))| < π

2
η (|z| < |z0|) and | arg(p(z0))| <

π

2
η (0 < η ≤ 1),

then
z0p

′(z0)

p(z0)
= ikη,
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where

k ≥ 1

2

(
a+

1

a

) (
when arg p(z0) =

π

2
η
)

,

k ≤ −1

2

(
a+

1

a

) (
when arg p(z0) = −

π

2
η
)
,

and (p(z0))
1
η = ±ia (a > 0).

2. Main results

Theorem 2.1. Let f ∈ Hm,λ,γ
α,β,ρ (η

λ,γ
1ρ

(η2)), where

ηλ,γ1ρ
(η2) = η2+

2

π
arctan

{
γλη2 sin

(
π
2 (1− η2)

)
ρ(1− η2)

1
2 (1−η2)(1 + η2)

1
2 (1+η2) + γλη2 cos

(
π
2 (1− η2)

)} .

Then ∣∣∣∣∣arg
(
Em,λ
α,β f(z)

z

)ρ∣∣∣∣∣ ≤ π

2
η2, η2 ∈ (0, 1].

Proof. Let (
Em,λ
α,β f(z)

z

)ρ

= p(z), (9)

where p(z) is analytic in U with p(0) = 1. Logarithmic differentiation of (9)
together with the relation (6) give

Em+1,λ
α,β f(z)

Em,λ
α,β f(z)

=
λ

ρ

zp′(z)

p(z)
+ 1. (10)

In view of (7), (9) and (10), we arrive at

arg
(
Lm,λ
α,β (γ, ρ; f)(z)

)
= arg p(z) + arg

(
1 +

γλ

ρ

zp′(z)/p(z)

p(z)

)
. (11)

If there exists z0 ∈ U such that

| arg(p(z))| < π

2
η2 (|z| < |z0|) and | arg(p(z0))| <

π

2
η2,

then by Lemma 1.3,

z0p
′(z0)

p(z0)
= ikη and (p(z0))

1
η = ±ia (a > 0).

Now, suppose arg(p(z0)) =
π
2 η2. Then

arg
(
Lm,λ
α,β (γ, ρ; f)(z)

)
=
π

2
η2 + arg

(
1 +

γλ

ρ

ikη2
aη2ei

π
2 η2

)
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=
π

2
η2 + arctan

(
γλ
2ρ

kη2

aη2
sin
(
π
2 (1− η2)

)
1 + γλ

2ρ
kη2

aη2
cos
(
π
2 (1− η2)

)) , k ≥ 1

2

(
a+

1

a

)
.

Since kη2

aη2
≥ η2

2

(
a1−η2 + a−1−η2

)
a > 0, then the function

h(a) = 1
2

(
a1−η2 + a−1−η2

)
assumes its minimum value at a =

(
1+η2

1−η2

) 1
2

. There-

fore,

arg
(
Lm,λ
α,β (γ, ρ; f)(z)

)

≥ π

2
η2 + arctan


γλη2

2ρ

[(
1+η2

1−η2

) 1−η2
2

+
(

1−η2

1+η2

) 1+η2
2

]
sin
(
π
2 (1− η2)

)
1 + γλη2

2ρ

[(
1+η2

1−η2

) 1−η2
2

+
(

1−η2

1+η2

) 1+η2
2

]
cos
(
π
2 (1− η2)

)
 .

This contradicts our assumption of the theorem. In a similar manner, we also
obtain a contradiction for
arg p(z0) = −π

2 η2. That is

arg
(
Lm,λ
α,β (γ, ρ; f)(z)

)

≥ −π

2
η2 − arctan


γλη2

2ρ

[(
1+η2

1−η2

) 1−η2
2

+
(

1−η2

1+η2

) 1+η2
2

]
sin
(
π
2 (1− η2)

)
1 + γλη2

2ρ

[(
1+η2

1−η2

) 1−η2
2

+
(

1−η2

1+η2

) 1+η2
2

]
cos
(
π
2 (1− η2)

)
 .

Thus the function p(z) has to satisfy | arg p(z)| < π
2 η2 for all z ∈ U This con-

cludes that ∣∣∣∣∣arg
(
Em,λ
α,β f(z)

z

)ρ∣∣∣∣∣ ≤ π

2
η2.

□

Remark 2.1. Let f ∈ A. Then by specifying the parameters, we have the
following implications.

(i) f ∈ Hγ
ρ(η

1,γ
1ρ

(η2)) =⇒
∣∣∣arg ( f(z)

z

)ρ∣∣∣ ≤ π
2 η2.

(ii) f ∈ Hρ(η
1,1
1ρ

(η2)) =⇒
∣∣∣arg ( f(z)

z

)ρ∣∣∣ ≤ π
2 η2.

(iii) f ∈ H(η1,111
(η2)) =⇒

∣∣∣arg ( f(z)
z

)∣∣∣ ≤ π
2 η2.

Theorem 2.2. STm+1,λ
α,β (η) ⊂ STm,λ

α,β (η) for all m ∈ N.
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Proof. Let f ∈ STm+1,λ
α,β (η) and set

z(Em,λ
α,β f(z))′

Em,λ
α,β f(z)

= p(z), (12)

where p(z) is analytic in U with p(0) = 1. Therefore, from the identity (6), we
obtain

Em+1,λ
α,β f(z) = (λp(z) + (1− λ)) Em,λ

α,β f(z),

and by logarithmic differentiation, we arrive at

z(Em+1,λ
α,β f(z))′

Em+1,λ
α,β f(z)

= p(z) +
λzp′(z)

(1− λ) + λp(z)
. (13)

Suppose there exists a point z0 ∈ U such that

| arg(p(z))| < π

2
η (|z| < |z0|) and | arg(p(z0))| <

π

2
η,

then by Lemma 1.3,

z0p
′(z0)

p(z0)
= ikη and (p(z0))

1
η = ±ia (a > 0).

Now, if arg(p(z0)) =
π
2 η. Then

arg

(
z0(E

m+1,λ
α,β f(z0))

′

Em+1,λ
α,β f(z0)

)

= arg(p(z0)) + arg

(
λz0p

′(z0)/p(z0)

(1− λ) + λp(z0)

)
=

π

2
η + arg

(
1 +

ikλη

(1− λ) + λe
iπ
2 η

)

=
π

2
η + arctan

[
kλη

(
(1− λ) + λaη cos

(
π
2 η
))

(1− λ)2 + λaη
(
2 cos

(
π
2 η
)
+ kλη sin

(
π
2 η
))]

≥ π

2
η

(
k ≥ 1

2

(
a+

1

a

))
.

This contradicts the fact that f ∈ STm+1,λ
α,β (η). Thus, the function p(z) needs

to satisfy | arg(p(z))| < pi
2 η (z ∈ U). Hence, f ∈ STm,λ

α,β (η). Similarly, if

arg(p(z0)) = π
2 η, then we also obtain a contradiction. Hence, we obtain the

required result.
Applying Theorem 2.2, we have the following corollary. □

Corollary 2.3. CTm+1,λ
α,β (η) ⊂ CTm,λ

α,β (η) for all m ∈ N.

Proof.

f ∈ CTm+1,λ
α,β (η)⇐⇒ Em+1,λ

α,β f(z) ∈ C̃(η)⇐⇒ z(Em+1,λ
α,β f(z))′ ∈ S̃∗(η)
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⇐⇒ Em+1,λ
α,β zf ′(z) ∈ S̃∗(η)⇐⇒ zf ′ ∈ STm+1,λ

α,β (η) =⇒ zf ′ ∈ STm,λ
α,β (η)

⇐⇒ Em,λ
α,β zf ′(z) ∈ S̃∗(η)⇐⇒ z(Em,λ

α,β f(z))′ ∈ S̃∗(η)⇐⇒ Em,λ
α,β f(z) ∈ C̃(η)

⇐⇒ f ∈ CTm,λ
α,β (η)

□

In the next results, we present the integral preserving property associated

with the classes STm,λ
α,β (η) and CTm,λ

α,β (η).
Consider the Bernardi integral operator

Bbf(z) =
b+ 1

zb

∫ z

0

tb−1f(t)dt, b ∈ N, f ∈ A. (14)

This operator was first introduced and studied by Bernardi in [3].

Theorem 2.4. Let f ∈ A. If f ∈ STm,λ
α,β (η), then Bbf(z) ∈ STm,λ

α,β (η).

Proof. Let f ∈ STm,λ
α,β (η) and set

z(Em,λ
α,β Bbf(z))′

Em,λ
α,β Bbf(z)

= p(z), (15)

where p(z) is analytic in U with p(0) = 1. Differentiating (14) and applying the

operator Em,λ
α,β , we obtain

z(Em,λ
α,β Bbf(z))

′ + bEm,λ
α,β Bbf(z) = (b+ 1)Em,λ

α,β f(z).

That is

(p(z) + b)Em,λ
α,β Bbf(z) = (b+ 1)Em,λ

α,β f(z).

By logarithmic differentiation, we arrive

z(Em,λ
α,β f(z))′

Em,λ
α,β f(z)

= p(z)

(
1 +

zp′/p(z)

b+ p(z)

)
. (16)

Suppose there exists a point z0 ∈ U such that

| arg(p(z))| < π

2
η (|z| < |z0|) and | arg(p(z0))| <

π

2
η.

If arg p(z0) = −π
2 η, then from Lemma 1.3,

arg

(
z0(E

m,λ
α,β f(z0))

′

Em,λ
α,β f(z0)

)

= arg p(z0) + arg

(
1 +

z0p
′(z0)/p(z0)

b+ p(z0)

)
= −π

2
η + arg

(
1 +

ikη

b+ aηe
iπ
2 η

)
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= −π

2
η + arctan

(
kη(b+ aη cos

(
π
2 η
)
)

b2 + 2aηb cos
(
π
2 η
)
+ a2η + kηaη sin

(
π
2 η
))

< −π

2
η

(
k ≤ −1

2

(
a+

1

a

)
≤ −1

)
.

This contradicts the definition of f ∈ STm,λ
α,β (η). Similarly, if arg p(z0) = π

2 η,

we also arrive at a contradiction. Thus, | arg p(z)| < π
2 η for all z ∈ U . Hence,

Bbf(z) ∈ STm,λ
α,β (η). □

Using Theorem 2.4, we have the following corollary.

Corollary 2.5. Let f ∈ A. If f ∈ CTm,λ
α,β (η), then Bbf(z) ∈ CTm,λ

α,β (η).

Proof.

f ∈ CTm,λ
α,β (η)⇐⇒ zf ′ ∈ STm,λ

α,β (η) =⇒ Bbzf ′(z) ∈ STm,λ
α,β (η)

⇐⇒ z (Bbf(z))′ ∈ STm,λ
α,β (η)⇐⇒ Bbf(z) ∈ CTm,λ

α,β (η).

□

3. Conclusion

Using the generalized Mittag-Leffler linear operator initiated in [7], we intro-

duced the classes Hm,λ,γ
α,β,ρ (η), ST

m,λ
α,β (η) and CTm,λ

α,β (η). The investigations were
in twofold. Firstly, we studied and proved the inclusion implications related

with the classes. Also, it was shown that the classes STm,λ
α,β (η) and CTm,λ

α,β (η)
are invariant under the Bernardi integral operator.
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of the Carathéodory functions and their applications, Journal of Inequalities and Applica-
tions 2020 (2020), 1-14.



Mittag Leffler functions 945
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