과제정보
이 논문은 2023년도 한국산업단지공단의 재원으로 울산 스마트제조고급인력양성사업의 지원을 받아 수행된 연구임
참고문헌
- S. G. Lee(2018), "A study on the trends of construction safety accident in unstructured text using topic modeling." Journal of the Korea Academia-Industrial Cooperation Society, 19(10):176-182. https://doi.org/10.5762/KAIS.2018.19.10.176
- K. Park, H. Kim(2021), "Analysis of seasonal importance of construction hazards using text mining." Journal of the Korean Society of Civil Engineers, 41(3):305-316.
- F. Zhang, H. Fleyeh, X. Wang, M. Lu(2019), "Construction site accident analysis using text mining and natural language processing techniques." Automation in Construction, 99:238-248. https://doi.org/10.1016/j.autcon.2018.12.016
- Y. C. Kim, W. S. Yoo, Y. S. Shin(2017), "Application of artificial neural networks to prediction of construction safety accidents." Journal of the Korean Society of Hazard Mitigation, 17(1):7-14. https://doi.org/10.9798/KOSHAM.2017.17.1.7
- J. H. Jo(2012), "A study on the causes analysis and preventive measures by disaster types in construction fields." Journal of the Korea Safety Management & Science, 14(1):7-13. https://doi.org/10.12812/ksms.2012.14.1.007
- S. J. Choi, J. H. Kim, K. Jung,(2021), "Development of prediction models for fatal accidents using proactive information in construction sites." Journal of the Korean Society of Safety, 36(3):31-39. https://doi.org/10.14346/JKOSOS.2021.36.3.31
- Y. Cho, Y. C. Kim, Y. Shin(2017), "Prediction model of construction safety accidents using decision tree technique." Journal of the Korea Institute of Building Construction, 17(3):295-303. https://doi.org/10.5345/JKIBC.2017.17.3.295
- Q. Xu, K. Xu(2021), "Analysis of the characteristics of fatal accidents in the construction industry in China based on statistical data." International Journal of Environmental Research and Public Health, 18(4):2162.
- B. Hola, T. Nowobilski, I. Szer, J. Szer(2017), "Identification of factors affecting the accident rate in the construction industry." Procedia Engineering, 208:35-42. https://doi.org/10.1016/j.proeng.2017.11.018
- N. Udawatta, R. Rameezdeen(2012), Fatalities and non-fatalities in construction accidents. Deakin University. https://hdl.handle.net/10536/DRO/DU:30088163
- M. Amiri, A. Ardeshir, M. H. Fazel Zarandi, E. Soltanaghaei(2016), "Pattern extraction for high-risk accidents in the construction industry: A data-mining approach." International Journal of Injury Control and Safety Promotion, 23(3):264-276. https://doi.org/10.1080/17457300.2015.1032979
- M. Cho, D. Lee, J. Park, S. Park(2022), "Development of machine learning-based construction accident prediction model using structured and unstructured data of construction sites." KSCE Journal of Civil and Environmental Engineering Research, 42(1):127-134. https://doi.org/10.12652/KSCE.2022.42.1.0127
- S. M. Lundberg, S. I. Lee(2017), "A unified approach to interpreting model predictions." Advances in Neural Information Processing Systems, 30.
- T. Chen, C. Guestrin(2016, August), "Xgboost: A scalable tree boosting system." Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785-794.
- S. K. TBrain(2019), Korean BERT pre-trained cased (KoBERT). https://github.com/SKTBrain/KoBERT
- E. L. Park, S. Cho(2014, October), "KoNLPy: Korean natural language processing in Python." Proceedings of the 26th Annual Conference on Human & Cognitive Language Technology, Chuncheon, Korea, 6:133-136.
- T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama(2019, July), "Optuna: A next-generation hyperparameter optimization framework." Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623-2631.