DOI QR코드

DOI QR Code

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer

폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가

  • Byeonghyun Hwang (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Minkyu Kang (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kibeom Kwon (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jeonghun Yang (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hangseok Choi (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 황병현 (고려대학교 건축사회환경공학과) ;
  • 강민규 (고려대학교 건축사회환경공학과) ;
  • 권기범 (고려대학교 건축사회환경공학과) ;
  • 양정훈 (고려대학교 건축사회환경공학과) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2023.08.14
  • Accepted : 2023.09.05
  • Published : 2023.09.30

Abstract

The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.

토압식(Earth Pressure Balanced, EPB) 쉴드 TBM (Tunnel Boring Machine) 공법은 진동과 소음이 적어 도심지 지하공간 시공에 적극적으로 활용되고 있다. 이때 첨가제 주입은 막장압 유지, 전단강도 감소, 커터의 마모량 최소화, 굴착토의 투수계수 감소 등 다양한 효과를 보인다. 이러한 기술을 쏘일 컨디셔닝이라 하며, 일반적으로 첨가제로 폼, 폴리머, 벤토나이트 슬러리 등을 적용한다. 본 연구에서는 국내 터널 현장에서 빈번하게 조우하는 화강풍화토 시료에 대해 폼과 폴리머를 첨가제로 적용하여 유동학적 특성을 평가하였다. 슬럼프 시험을 통해 작업성(Workability)을 평가하고, 동일한 시험 조건에 대해 실내 가압 베인전단 시험을 수행하여 유동학적 특성을 평가하였다. 이때 슬럼프 값이 높아 작업성이 떨어지는 경우, 폴리머를 추가 적용하여 폴리머 적용이 유동학적 특성에 미치는 영향을 검토하였다. 시험 결과, 폼 주입비(Foam Injection Ratio, FIR)가 증가함에 따라 슬럼프 값은 증가한 반면 토크, 첨두강도 및 항복응력, 겉보기 점도, 틱소트로피 면적은 감소하였다. 하지만, 폴리머 주입비(Polymer Injection Ratio, PIR)는 폼 주입비와 상반되는 결과를 확인하였다. 시험결과 비교를 통해 슬럼프 값과 항복응력 간의 상관관계를 제시하였다. 그리고 폼 만을 적용한 조건과 폼과 폴리머 모두 적용한 조건을 비교한 결과, 유사한 슬럼프 값을 보이더라도 폼과 폴리머 모두 적용한 조건에서 더 낮은 항복응력이 도출되었다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 건설기술연구사업(TBM 굴진향상을 위한 연속굴착 기술개발, RS-2022-00144188)의 지원으로 수행되었으며 이에 깊은 감사를 드립니다.

References

  1. ASTM C143 (2017), Standard test method for slump of hydraulic-cement concrete, ASTM International, Vol. 04.02, pp. 1-4.
  2. ASTM D4648 (2016), Standard test method for laboratory miniature vane shear test for saturated fine grained clayey soil, ASTM International, Vol. 04.08, pp. 1-7.
  3. Avunduk, E., Copur, H., Tolouei, S., Tumac, D., Balci, C., Bilgin, N., Shaterpour-Mamaghani, A. (2021), "Possibility of using torvane shear testing device for soil conditioning optimization", Tunnelling and Underground Space Technology, Vol. 107, 103665.
  4. Budach, C., Thewes, M. (2015), "Application ranges of EPB shields in coarse ground based on laboratory research", Tunnelling and Underground Space Technology, Vol. 50, pp. 296-304. https://doi.org/10.1016/j.tust.2015.08.006
  5. EFNARC (2005), Specification and guidelines for the use of specialist products for mechanised tunnelling (TBM) in soft ground and hard rock, European Federation of National Associations Representing for Concrete, pp. 1-45.
  6. Feng, Q.L. (2004), "Soil conditioning for modern EPBM drives", Tunnels and Tunnelling International, Vol. 36, No. 12, pp. 18-20.
  7. Galli, M., Thewes, M. (2019), "Rheological characterisation of foam-conditioned sands in EPB tunneling", International Journal of Civil Engineering, Vol. 17, pp. 145-160. https://doi.org/10.1007/s40999-018-0316-x
  8. Gharahbagh, E.A., Rostami, J., Talebi, K. (2014), "Experimental study of the effect of conditioning on abrasive wear and torque requirement of full face tunneling machines", Tunnelling and Underground Space Technology, Vol. 41, pp. 127-136. https://doi.org/10.1016/j.tust.2013.12.003
  9. Ghica, M.V., Hirjau, M., Lupuleasa, D., Dinu-Pirvu, C.E. (2016), "Flow and thixotropic parameters for rheological characterization of hydrogels", Molecules, Vol. 21, No. 6, pp. 786-802. https://doi.org/10.3390/molecules21060786
  10. Hu, W., Rostami, J. (2021), "Evaluating rheology of conditioned soil using commercially available surfactants (foam) for simulation of material flow through EPB machine", Tunnelling and Underground Space Technology, Vol. 112, 103881.
  11. Karmakar, S., Kushwaha, R.L. (2007), "Development and laboratory evaluation of a rheometer for soil visco-plastic parameters", Journal of Terramechanics, Vol. 44, No. 2, pp. 197-204. https://doi.org/10.1016/j.jterra.2006.10.002
  12. Kim, T.H., Kwon, Y.S., Chung, H., Lee, I.M. (2018), "A simple test method to evaluate workability of conditioned soil used for EPB shield TBM", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 6, pp. 1049-1060. https://doi.org/10.9711/KTAJ.2018.20.6.1049
  13. Kwon, K., Choi, H., Oh, J.Y., Kim, D. (2022), "A study on EPB shield TBM face pressure prediction using machine learning algorithms", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 2, pp. 217-230. https://doi.org/10.9711/KTAJ.2022.24.2.217
  14. Kwon, K., Kang, M., Kim, D., Choi, H. (2023), "Prioritization of hazardous zones using an advanced risk management model combining the analytic hierarchy process and fuzzy set theory", Sustainability, Vol. 15, No. 15, 12018.
  15. Langmaack, L. (2000), "Advanced technology of soil conditioning in EPB shield tunneling", Proceedings of the North American Tunneling, Vol. 2000, Boston, pp. 525-542.
  16. Lee, H. (2021), Evaluation on performance of EPB shield tunnelling with foam conditioning, Ph.D. Thesis, Korea University, pp. 1-272.
  17. Lee, H., Kwak, J., Choi, J., Hwang, B., Choi, H. (2022), "A lab-scale experimental approach to evaluate rheological properties of foam-conditioned soil for EPB shield tunnelling", Tunnelling and Underground Space Technology, Vol. 128, 104667.
  18. Lee, H., Shin, D., Kim, D.Y., Shin, Y.J., Choi, H. (2019), "Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand", Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 4, pp. 545-560. https://doi.org/10.9711/KTAJ.2019.21.4.545
  19. Meng, Q., Qu, F., Li, S. (2011), "Experimental investigation on viscoplastic parameters of conditioned sands in earth pressure balance shield tunneling", Journal of Mechanical Science and Technology, Vol. 25, No. 9, pp. 2259-2266. https://doi.org/10.1007/s12206-011-0611-9
  20. Merritt, A.S., Borghi, F.X., Mair, R.J. (2003), "Conditioning of clay soils for earth pressure balance tunnelling machines", Proceedings of the Underground Construction 2003, London, pp. 455-466.
  21. Messerklinger, S., Zumsteg, R., Puzrin, A. (2011), "A new pressurized vane shear apparatus", Geotechnical Testing Journal, Vol. 34, No. 2, pp. 112-121. https://doi.org/10.1520/GTJ103175
  22. Oh, J. (2021), Laboratory study on optimum foam injection condition for EPB shield TBM in weathered granite soil, Master Thesis, Korea University, pp. 1-96.
  23. Park, J.O., Yoo, Y.H., Park, B.J. (2015), "An analysis study for reasonable installation of tunnel fire safety facility", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 3, pp. 243-248. https://doi.org/10.9711/KTAJ.2015.17.3.243
  24. Peila, D., Oggeri, C., Vinai, R. (2007), "Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 12, pp. 1622-1625. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1622)
  25. Quebaud, S., Sibai, M., Henry, J.P. (1998), "Use of chemical foam for improvements in drilling by earth-pressure balanced shields in granular soils", Tunnelling and Underground Space Technology, Vol. 13, No. 2, pp. 173-180. https://doi.org/10.1016/S0886-7798(98)00045-5
  26. Shin, D. (2020), Evaluation of EPB TBM excavation performance on artificial sandy soils with foam injection conditions, Master Thesis, Korea University, pp. 1-272.
  27. Zhou, X., Yang, Y. (2020), "Effect of foam parameters on cohesionless soil permeability and its application to prevent the water spewing", Applied Sciences, Vol. 10, No. 5, pp. 1787-1797. https://doi.org/10.3390/app10051787
  28. Zumsteg, R., Messerklinger, S., Puzrin, A.M., Egli, H., Walliser, A. (2009), "Pressurized vane shear test for soil conditioning", Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, pp. 275-278.