DOI QR코드

DOI QR Code

Modeling and Simulation for Effectiveness Analysis of Anti-Ballistic Warfare in Naval Vessels

함정의 대탄도탄전 효과도 분석을 위한 모델링 및 시뮬레이션

  • Received : 2023.08.11
  • Accepted : 2023.09.13
  • Published : 2023.09.30

Abstract

In recent years, naval vessels have been developed to fulfill a variety of missions by being equipped with various cutting-edge equipment and ICT technologies. One of the main missions of Korean naval vessels is anti-ballistic missile warfare to defend key units and areas against the growing threat of ballistic missiles. Because the process of detection and interception is too complex and the cost of failure is much high, a lot of preparation is required to effectively conduct anti-ballistic missile warfare. This paper describes the development of a simulation model of anti-ballistic missile warfare with combat systems and equipment to be installed on future naval vessels. In particular, the DEVS formalism providing a modular and hierarchical modeling manner was applied to the simulation model, which can be utilized to efficiently represent various anti-ballistic missile warfare situations. In the simulation results presented, experiments were conducted to analyze the effectiveness of the model for effective detection resource management in anti-ballistic missile warfare. This study is expected to be utilized as a variety of analysis tools necessary to determine the optimal deployment and configuration of combat resources and operational tactics required for effective anti-ballistic missile warfare of ships in the future.

최근 해군 함정은 다양한 최첨단 장비와 ICT 기술이 탑재되어 다종의 임무를 수행할 수 있도록 개발되고 있다. 우리나라 해군 함정의 주요 임무 중 하나는 급증하고 있는 탄도탄의 위협으로부터 아군의 주요 유닛과 지역을 방어하는 대탄도탄전이다. 대탄도탄전의 경우 탐지에서 요격까지 이루어지는 과정이 복잡한 반면 실패에 대한 피해가 크기 때문에, 대탄도탄전을 효과적으로 수행하기 위한 많은 준비가 필요하다. 본 논문에서는 미래 해군 함정에 탑재될 전투체계 및 장비를 활용한 대탄도 탄전 시뮬레이션 모델을 제안한다. 특히, 대탄도탄전에 필요한 특성을 반영하여 향후 효과도 분석에 활용될 수 있는 시뮬레이션 모델을 제안하고자 한다. 이를 위하여, 시뮬레이션 모델 개발에 DEVS 형식론을 적용하여 모듈러하고 계층적인 모델을 개발하였으며, 다양한 대탄도탄전 상황을 효율적으로 표현할 수 있게 하였다. 제시된 사례 연구 결과에서는 함정의 탐지 체계의 성능 및 의사 결정으로 발생할 수 있는 대탄도탄전의 문제 상황을 시뮬레이션 내용과 그 의미를 설명하였다. 향후 본 연구의 결과가 함정의 대탄도탄전 효과도 분석은 물론 함정의 대탄도탄전의 효과적인 수행을 위한 최적의 전투자원 배치 및 제원 그리고 운용 전술 등을 개발하는데 활용되기를 기대한다.

Keywords

Acknowledgement

이 논문은 2023년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임.(계약번호: UD210008DD)

References

  1. Choi, Inoh(2020). Discrimination of Ballistic Targets with Macro and Micro Motions. Doctoral Dissertation, Department of Electrical Engineering, Pohang University of Science and Technology.
  2. Kyoung Haing Lee, Jeong Hwan Choi(2016). A Study on the Mission Effect of a Sea-based BMD system. Journal of Aerospace System Engineering, 10(1), 118-126.
  3. Jun-Soo Kim, Keon-Young Park, Jae-Yeong Lee, Sung- Min Bae, Jai-Jeong Pyun, Chong-Man Kim (2014). A Survey Study of the Combat Effectiveness Analysis Models and Future Research Areas. Korean Journal of Computational Design and Engineering, 19(4), 305-315. https://doi.org/10.7315/CADCAM.2014.305
  4. Jaeho Na, Seinghun Ok, Kwanseob Yoon(2014). Verification of survival probability of a ship equipped with Ship-RCS using SADM. 대한전자공학회 학술대회, 1148-1150.
  5. Boinepalli, S., and Brown, G.A.(2010). Simulation Studies of Naval Warships using the Ship Air Defence Model (SADM).
  6. Han, seungjin, Lee, minkyu, and Sungyoung Park (2013). Development of Underwater Warfare Models on the Naval Weapon Systems, Journal of the Korea Society for Simulation, 22(4), 1-9. https://doi.org/10.9709/JKSS.2013.22.4.001
  7. Bae, J.-W. et al., 2012, "Methodology of Analyzing the Measure of Combat Effectiveness Reflecting Communication Effects in Network Centric Warfare", Journal of the Korea society for Simulation, 21(3), pp.57-69. https://doi.org/10.9709/JKSS.2012.21.3.057
  8. Sunjun Park, Seungsik Min, Yonghoon Ha(2022). Analysis of the Combat Effectiveness of the Unmanned Surface Vehicle. Journal of the KNST, 5(2),134-142. https://doi.org/10.31818/JKNST.2022.09.5.2.134
  9. Seo, Kyung-Min, Kim, Tag Gon, Song, Hae-Sang, Kim, Jung Hoon, Chung, Suk Moon(2014).Combat Entity Based Modeling Methodology to Enable Joint Analysis of Performance/Engagement Effectiveness - Part 1 : Conceptual Model Design, Journal of the Korea Institute of Military Science and Technology, 17(2), 223-234. https://doi.org/10.9766/KIMST.2014.17.2.223
  10. Choi, Kwan Seon, junhyoung Kim, taewon Lee(2012). A Case Study of Effectiveness Analysis of Naval Combat System Design. Journal of the Korea Association of Defense Industry Studies, 19(2), 38-51.
  11. Yeontaek Jung, Hanna Lee, Youngjun Lee, Youdan Kim(2023). Time-to-go Prediction for Low Stage Mid-course Guidance of Multi-stage Anti-ballistic Missile. Proceedings in conference of The Korea Society of Aeronautical and Space Sciences, 2023, 266-267.
  12. HanYoonho, Lee Heoncheol, Hyeokhoon Gwon, Wonseok Choi, Bora Jeong(2022). Parallelized Particle Swarm Optimization with GPU for Real-Time Ballistic Target Tracking. IEMEKK J. Embed. Sys. Appl, 17(6), 355-365.
  13. Juho Oh, Dongsu Kang(2022). Predicting the Ballistic Missile Range using Long Short Term Memory. KIISE Transactions on Computing Practices, 28(8), 405-412. https://doi.org/10.5626/KTCP.2022.28.8.405
  14. Yong-Soo Park, Chan-Won Jeon, Syng-Man Rhee, Jin-Hong Kim, Sung-Woo Lee, Mun-Ja Jo(2018). A Study of Operational Assessment Test for Ballistic Missile Intercept. Proceedings in conference of The Korea Society of Aeronautical and Space Sciences, 2018, 618-619.
  15. Syng Man Rhee, Dong Ok Hong, Hyo Chang Kim, Keun Ho Lee, 손동협, Jin Hong Kim(2017). A Study of System Design Acquisition for Anti Ballistic Missile Intercept. Proceedings in conference of The Korea Society of Aeronautical and Space Sciences, 2017, 805-806.
  16. Zeigler, Bernard P., Tag Gon Kim, and Herbert Praehofer (2000), Theory of Modeling and Simulation.
  17. Song, H.S., & Kim, T.G.(2010). DEVS Diagram Revised: A Structred Approach For DEVS Modling.
  18. MISSILE DATA COMPENDIUM (DATCOM) User Manual - 2014 Revision" (PDF). Archived (PDF) from the original on 2022-01-12. Retrieved 2022-10-21.
  19. Murtaugh, S. A., & Criel, H. E. (1966). Fundamentals of proportional navigation. IEEE spectrum, 3(12), 75-85.
  20. Pryluk, R., Shima, T., & Golan, O. M. (2014). Shoot-shoot-look for an air defense system. IEEE Systems Journal, 10(1), 151-161.
  21. Jaechang Yang(2018). Development Trends of Multifunctional Radars for Ships around the World (I). Defense & Technology, (469), 96-111.
  22. Kwangmin Joo(2023). Task Scheduling Method with Reinforcement Learning using Double Deep Q-Network based for Multi-function Radar.Journal of the Korea Academia-Industrial cooperation Society, 24(7), 458-465. https://doi.org/10.5762/KAIS.2023.24.7.458
  23. Daesung Jang, Sunseo Park, Doohyun Cho, Hanlim Choi, Donggil Yoo, Jonghyun Lee, and Woong Sun(2015). Estimation of Target Tracking Performance for Efficient Resource Allocation in Multi-function Radars. Proceedings in conference of The Korea Society of Aeronautical and Space Sciences, 2015, 676-679.
  24. Sang Eun Yoo, Dae-Sung Jang(2023). Analysis of Defense Effectiveness in Cooperative Engagement for Multi-layered Missile Defense System With Differing Ballistic Missile Trajectories.Journal of Institute of Control, Robotics and Systems, 29(8), 671-678.
  25. JeongHoon Kim, HuiSu Kim, YeongHwi Kwon, GiJeong Son, DuHyeong Lee, EunYeong Cho(2023). A Simulation Function Development of the Mission Level Model to Analyze an Maritime Damage Effectiveness of the Howitzer. Journal of the KNST, 6(2), 118-126. https://doi.org/10.31818/JKNST.2023.06.6.2.118