DOI QR코드

DOI QR Code

GPU Acceleration of Range Doppler Algorithm for Real-Time SAR Image Generation

실시간 SAR 영상 생성을 위한 Range Doppler Algorithm의 GPU 가속

  • Dong-Min Jeong (Department of Smart Air Mobility, Korea Aerospace University) ;
  • Woo-Kyung Lee (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Myeong-Jin Lee (Department of Smart Air Mobility, Korea Aerospace University) ;
  • Yun-Ho Jung (Department of Smart Air Mobility, Korea Aerospace University)
  • Received : 2023.08.28
  • Accepted : 2023.09.20
  • Published : 2023.09.30

Abstract

In this paper, a GPU-accelerated kernel of range Doppler algorithm (RDA) was developed for real-time image formation based on frequency modulated continuous wave (FMCW) synthetic aperture radar (SAR). A pinned memory was used to minimize the data transfer time between the host and the GPU device, and the kernel was configured to perform all RDA operations on the GPU to minimize the number of data transfers. The dataset was obtained through the FMCW drone SAR experiment, and the GPU acceleration effect was measured in an intel i7-9700K CPU, 32GB RAM, and Nvidia RTX 3090 GPU environment. Including the data transfer time between host and devices, it was measured to be accelerated up to 3.41 times compared to the CPU, and when only the acceleration effect of operation was measured without including the data transfer time, it was confirmed that it could be accelerated up to 156 times.

본 논문에서는 FMCW(Frequency Modulated Continuous Wave) SAR(Synthetic Aperture Radar) 기반 실시간 영상 형성을 위해 RDA(Range Doppler Algorithm)의 GPU 가속 커널을 개발하였다. Host와 GPU device 사이의 데이터 전송 시간을 최소화하기 위해 pinned 메모리를 사용하였고, 데이터의 전송 횟수를 최소화하기 위해 모든 RDA 연산을 GPU에서 수행하도록 커널을 구성하였다. FMCW 드론 SAR 실험을 통해 데이터셋를 획득하였고, intel i7-9700K CPU, 32GB RAM과 Nvidia RTX 3090 GPU 환경에서 GPU의 가속 효과를 측정하였다. Host-device간 데이터 전송 시간을 포함했을 경우 CPU 대비 최대 3.41배 가속된 것으로 측정되었고, 데이터 전송 시간을 포함하지 않고 연산의 가속 효과만을 측정했을 때, 최대 156배 가속 가능함을 확인할 수 있었다.

Keywords

Acknowledgement

The authors gratefully acknowledge the support from Next Generation SAR Research Laboratory at Korea Aerospace University, originally funded by Defense Acquisition Program Administration (DAPA) and Agency for Defense Development (ADD).

References

  1. A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geoscience and Remote Sensing Magazine, vol.1, no.1, pp.6-43, 2013. DOI: 10.1109/MGRS.2013.2248301
  2. W. M. Brown and L. J. Porcello, "An introduction to synthetic-aperture radar," IEEE Spectrum, vol.6, no.9, pp.52-62, 1969. DOI: 10.1109/MSPEC.1969.5213674
  3. Cumming, Ian G., and Frank H. Wong. "Digital processing of synthetic aperture radar data," Artech house 1.3: 108-110, 2005.
  4. A. Bekar, M. Antoniou and C. J. Baker, "Low- Cost, High-Resolution, Drone-Borne SAR Imaging," IEEE Transactions on Geoscience and Remote Sensing, vol.60, pp.1-11, 2022. DOI: 10.1109/TGRS.2021.3085235
  5. J. Yan, Z. Peng, H. Hong, H. Chu, X. Zhu and C. Li, "Vital-SAR-Imaging With a Drone-Based Hybrid Radar System," IEEE Transactions on Microwave Theory and Techniques, vol.66, no.12, pp.5852-5862, 2018. DOI: 10.1109/TMTT.2018.2874268
  6. A. Meta, P. Hoogeboom and L. P. Ligthart, "Signal Processing for FMCW SAR," IEEE Transactions on Geoscience and Remote Sensing, vol.45, no.11, pp.3519-3532, 2007. DOI: 10.1109/TGRS.2007.906140
  7. R. Wang, O. Loffeld, H. Nies, S. Knedlik, M. Hagelen and H. Essen, "Focus FMCW SAR Data Using the Wavenumber Domain Algorithm," IEEE Transactions on Geoscience and Remote Sensing, vol.48, no.4, pp. 2109-2118, 2010. DOI: 10.1109/TGRS.2009.2034368
  8. W. M. Brown and R. J. Fredricks, "Range-Doppler Imaging with Motion through Resolution Cells," IEEE Transactions on Aerospace and Electronic Systems, vol.AES-5, no.1, pp.98-102, 1969. DOI: 10.1109/TAES.1969.309826
  9. R. K. Raney, H. Runge, R. Bamler, I. G. Cumming and F. H. Wong, "Precision SAR processing using chirp scaling," IEEE Transactions on Geoscience and Remote Sensing, vol.32, no.4, pp.786-799, 1994. DOI: 10.1109/36.298008
  10. J. L. Walker, "Range-Doppler Imaging of Rotating Objects," IEEE Transactions on Aerospace and Electronic Systems, vol. AES-16, no.1, pp.23-52, 1980. DOI: 10.1109/TAES.1980.308875
  11. M. D. Desai and W. K. Jenkins, "Convolutional backprojection image reconstruction for spotlight mode synthetic aperture radar," IEEE Transactions on Image Processing, vol.1, pp.505-517, 1992. DOI: 10.1109/83.199920
  12. Carra, W., R. Goodman, and R. Majewski. "Spotlight synthetic aperture radar-signal processing algorithm," Artech House: Norwood, 1995.
  13. B. Liu, K. Wang, X. Liu and W. Yu, "An Efficient SAR Processor Based on GPU via CUDA," 2009 2nd International Congress on Image and Signal Processing, Tianjin, China, pp.1-5. 2009. DOI: 10.1109/CISP.2009.5304418
  14. M. Wielage, F. Cholewa, C. Fahnemann, P. Pirsch and H. Blume, "High Performance and Low Power Architectures: GPU vs. FPGA for Fast Factorized Backprojection," 2017 Fifth International Symposium on Computing and Networking (CANDAR), pp.351-357. 2017. DOI: 10.1109/CANDAR.2017.101
  15. F. Zhang, C. Hu, W. Li, W. Hu and H. -C. Li, "Accelerating Time-Domain SAR Raw Data Simulation for Large Areas Using Multi-GPUs," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.7, no.9, pp.3956-3966, 2014. DOI: 10.1109/JSTARS.2014.2330333
  16. D. L. N. Hettiarachchi and E. J. Balster, "Fixed-Point Processing of the SAR Back-Projection Algorithm on FPGA," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.14, pp.10889-10902, 2021. DOI: 10.1109/JSTARS.2021.3119007
  17. Choi, Yeongung, et al. "Fpga implementation of the range-doppler algorithm for real-time synthetic aperture radar imaging," Electronics 2021, Vol.10, No.17, pp.2133, 2021. DOI: 10.3390/electronics10172133
  18. Lee, Jaehyeon, et al. "FPGA Implementation of the Chirp-Scaling Algorithm for Real-Time Synthetic Aperture Radar Imaging," Sensors, Vol.23, No.2, pp.959, 2023. DOI: 10.3390/s23020959