과제정보
본 연구는 정부(과학기술정보통신부, 산업통상자원부, 보건복지부, 식품의약품안전처)의 재원으로 범부처 전주기 의료기기 연구개발사업단(과제고유번호: RS-2020-KD000010)(202011B04, KMDF_PR_20200901_0010)과 중소벤처기업부의 기술개발사업[S3283078]의 지원을 받아 수행된 연구임.
참고문헌
- C. G. Chaussy, "The History of Shockwave Lithotripsy," in Handbook of The History of Technologic Advancements in Urology, edited by S. Patel, M. Moran, S. Nakada (Springer, Cham, 2018).
- Department of Health and Human Services, "Guidance for the content of premarket notifications (510(k)s) for extracorporeal shock wave lithotripters Indicated for the fragmentation of kidney and ureteral calculi, federal register," FDA Guidance, 2008.
- C. Chaussy, E. Schmiedt, B. Jocham, W. Brendel, B. Forssmann, and V. Walther, "First clinical experience with extracorporeally induced destruction of kidney stones by shock waves," J. Urology. 127, 417-420 (1982). https://doi.org/10.1016/S0022-5347(17)53841-0
- M. J. Choi, J. Y. Lee, and E. J. Park, "First report on the persist time of the free radical produced by shock wave pulses employed in clinical ESWL," Ultrason. Sonochem. 83, 105927 (2022).
- IEC 60601-2-36, Medical Electrical Equipment - Part 2-36: Particular Requirements for The Basic Safety and Essential Performance of Equipment for Extracorporeally Induced Lithotripsy, Edition 2.0, 2014.
- IEC 61846, Ultrasonics - Pressure pulse LithoTripters - Characteristics of Fields, First Ed., 1998.
- Ministry of Food and Drug Safety, "Safety and performance evaluation test method guide for in extracorporeal shock wave lithotripte," Guide-0784-01, 2017.
- C. Perez, H. Chen, T. J. Matula, M. Karzova, and V. A. Khokhlova, "Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device," J. Acoust. Soc. Am. 134, 1663-1674 (2013). https://doi.org/10.1121/1.4812885
- Ministry of Food and Drug Safety, "Guidelines for preparing technical documents for in extracorporeal shock wave therapy," Guide-0580-01, 2015.
- M. J. Choi, S. J. Jeon, O. B. Kwon, M. Y. Lee, J. S. Cho, H. S. Kim, and E. H. Maeng, "Inspection on the acoustic output of the focused extracorporeal focused shock wave therapeutic devices approved by MFDS" (in Korean), J. Acoust. Soc. Kr. 39, 303-317 (2020).
- S. J. Jeon, M. Y. Lee, O. B. Kwon, J. M. Kim, and M. J. Choi. "Reliability and utility of a Dry Test Bench for testing the acoustic output from a ballistic shock wave therapeutic device" (in Korean), J. Acoust. Soc. Kr. 41, 589-600 (2022).
- J. S. Cho, O. B. Kwon, S. J. Jeon, M. Y. Lee, J. M. Kim, M. J. Choi. "Acoustic outputs from clinical ballistic extracorporeal shock wave therapeutic devices" (in Korean), J. Acoust. Soc. Kr. 41, 570-588 (2022).
- A. J. Coleman, M. J. Choi, J. E. Saunders, and T. G. Leighton, "Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter," Ultrasound Med. Biol. 18, 267-281 (1992). https://doi.org/10.1016/0301-5629(92)90096-S
- M. J. Choi, S. C. Cho, D. G. Paeng, and K. I. Lee, "Extracorporeal shock wave therapy: Its acoustical aspects," J. Acoust. Soc. Kr. 29, 119-130 (2010).
- M. J. Choi, G. Kang, and J. S. Huh, "Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device," Biomed. Eng. Lett. 7, 143-151 (2017). https://doi.org/10.1007/s13534-017-0017-4
- S. Y. Cho, O. B. Kwon, S. C. Kim, H. Song, K. Kim, and M. J. Choi, "Understanding cavitation-related mechanism of therapeutic ultrasound in the field of urology: Part I of therapeutic ultrasound in urology," Investig. Clin. Urol. 63, 385-393 (2022). https://doi.org/10.4111/icu.20220059
- M. J. Choi and O. Kwon. "Temporal and spectral characteristics of the impulsive waves produced by a clinical ballistic shock wave therapy device," Ultrasonics, 110, 106238 (2021).
- M. K. Jeong and M. J. Choi, "A novel approach for the detection of every significant collapsing bubble in passive cavitation imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Control, 69, 1288-1300 (2022). https://doi.org/10.1109/TUFFC.2022.3151882
- S. R. Park, K. W. Jang, S.-H. Park, H. S. Cho, C. Z. Jin, M. J. Choi, S. L. Chung, and B. -H. Min, "The effect of sonication on simulated osteoarthritis. Part I: effects of 1 MHz ultrasound on uptake of hyaluronan into the rabbit synovium," Ultrasound Med. Biol. 31, 1551-1558 (2005). https://doi.org/10.1016/j.ultrasmedbio.2005.07.002
- I. S. Song, B. I. Choi, J. K. Han, H. K. Lee, Y. H. Park, Y. B. Yoon, J. W. Kim, and M. C. Han, "Piezoelectric lithotripsy of gallbladder stones: fragmentation rate vs stone size, number and character" (in Korean), J. Korean Radiol. Soc. 27, 813-816 (1991). https://doi.org/10.3348/jkrs.1991.27.6.813
- A. J. Coleman and J. E. Saunders. "A survey of the acoustic output of commercial extracorporeal shock wave lithotripters," Ultrasound Med. Biol. 15, 213-227 (1989). https://doi.org/10.1016/0301-5629(89)90066-5
- M. J. Choi, J. S. Huh, and G. Kang. "Apparatus for testing the performance of shockwave generator," Jeju National University Industry-Academic Cooperation Foundation, HNT MEDICAL CO. LTD., Patent, 2018.
- Urology Care Foundation, https://www.urologyhealth.org/urology-a-z/k/kidney-stones (Last viewed August 30, 2023).
- D. Heimbach, R. Munver, P. Zhong, J. Jacobs, A. Hesse, S. C. Muller, and G. M. Preminger. "Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones," J. Urol. 164, 537-544 (2000). https://doi.org/10.1016/S0022-5347(05)67419-8
- S. R. Guntur, S. C. Kim, and M. J. Choi. "A cost-effective reusable tissue mimicking phantom for high intensity focused ultrasonic liver surgery," Bioengineering, 9, 786 (2022).
- M. -T. Do, T. H. Ly, M. J. Choi, and S. Y. Cho, "Clinical application of the therapeutic ultrasound in urologic disease: Part II of the therapeutic ultrasound in urology," Investig. Clin. Urol. 63, 394-406 (2021).
- F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic press, London, 2013), pp. 73-124.