DOI QR코드

DOI QR Code

Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications

바이오 응용을 위한 초음파 및 광학 기반 다중 모달 영상 기술

  • 이문환 (대구경북과학기술원 전기전자컴퓨터공학과) ;
  • 박희연 (대구경북과학기술원 전기전자컴퓨터공학과) ;
  • 이경수 (대구경북과학기술원 전기전자컴퓨터공학과) ;
  • 김세웅 (대구경북과학기술원 전기전자컴퓨터공학과) ;
  • 김지훈 (강남대학교 ICT융합공학부 전자공학전공) ;
  • 황재윤 (대구경북과학기술원 전기전자컴퓨터공학과)
  • Received : 2023.07.10
  • Accepted : 2023.09.13
  • Published : 2023.09.30

Abstract

This study explores recent research trends and potential applications of ultrasound optical imaging-based multimodal technology. Ultrasound imaging has been widely utilized in medical diagnostics due to its real-time capability and relative safety. However, the drawback of low resolution in ultrasound imaging has prompted active research on multimodal imaging techniques that combine ultrasound with other imaging modalities to enhance diagnostic accuracy. In particular, ultrasound optical imaging-based multimodal technology enables the utilization of each modality's advantages while compensating for their limitations, offering a means to improve the accuracy of the diagnosis. Various forms of multimodal imaging techniques have been proposed, including the fusion of optical coherence tomography, photoacoustic, fluorescence, fluorescence lifetime, and spectral technology with ultrasound. This study investigates recent research trends in ultrasound optical imaging-based multimodal technology, and its potential applications are demonstrated in the biomedical field. The ultrasound optical imaging-based multimodal technology provides insights into the progress of integrating ultrasound and optical technologies, laying the foundation for novel approaches to enhance diagnostic accuracy in the biomedical domain.

이 연구는 초음파 광학 영상 기반의 다중 모달 영상 기술에 대한 최신 연구 동향과 응용 가능성에 대해 조사하였다. 초음파 영상은 실시간 영상 기능을 가지고 있으며 인체에 상대적으로 안전한 특성으로 인해 의료 분야에서 다양한 질병의 진단에 사용되고 있다. 그러나 초음파 영상은 해상도가 낮은 한계가 있어 진단 정확도를 향상시키기 위해 다른 광학 영상과의 결합을 통한 다중 모달 영상 기술 개발 연구가 진행되고 있다. 특히 초음파 광학 영상 기반의 다중 모달 영상 기술은 각각의 영상 기법의 장점을 극대화하고 단점을 보완함으로써 질병 진단 정확도를 향상시킬 수 있는 수단으로 사용되고 있다. 이러한 기술은 초음파의 실시간 영상 기능과 광간섭 단층 영상 융합 기술, 초음파 광음향 다중 모달 영상 기술, 초음파 형광 다중 모달 영상 기술, 초음파 형광 시정수 다중 모달 영상 기술 및 초음파 분광 다중 모달 영상 기술 등 다양한 형태로 제안되고 있다. 본 연구에서는 이러한 초음파 광학 영상 기반의 다중 모달 영상 기술의 최신 연구 동향을 소개하고, 의학 및 바이오 분야에서의 응용 가능성을 조사하였다. 이를 통해 초음파와 광학 기술의 융합이 어떻게 진행되고 있는지에 대한 통찰력을 제공하고, 의료 분야에서의 진단 정확도 향상을 위한 새로운 접근 방식에 대한 기반을 마련하였다.

Keywords

Acknowledgement

본 연구는 2023년도 산업통산자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20014214). 또한, 정부(과학기술정보통신부, 산업통상자원부, 보건복지부, 식품의약품안전처)의 재원으로 범부처전주기의료기기연구개발사업단의 지원을 받아 수행된 연구임(2023010051, RS-2022-00141185).

References

  1. R. Guo, G. Lu, B. Qin, and B. Fei, "Ultrasound imaging technologies for breast cancer detection and management: A review," Ultrasound Med. Biol. 44, 37-70 (2018). https://doi.org/10.1016/j.ultrasmedbio.2017.09.012
  2. S.-F. Huang, R.-F. Chang, W. K. Moon, Y.-H. Lee, D.-R. Chen, and J. S. Suri, "Analysis of tumor vascularity using three-dimensional power Doppler ultrasound images," IEEE Trans. Med. Imaging, 27, 320-330 (2008). https://doi.org/10.1109/TMI.2007.904665
  3. R. Y. Chiao and X. Hao, "Coded excitation for diagnostic ultrasound: a system developer's perspective," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52, 160-170 (2005). https://doi.org/10.1109/TUFFC.2005.1406543
  4. M. Freesmeyer, S. Wiegand, J.-H. Schierz, T. Winkens, and K. Licht, "Multimodal evaluation of 2-D and 3-D ultrasound, computed tomography and magnetic resonance imaging in measurements of the thyroid volume using universally applicable cross-sectional imaging software: a phantom study," Ultrasound Med. Biol. 40, 1453-1462 (2014). https://doi.org/10.1016/j.ultrasmedbio.2014.02.013
  5. F. Paparo, R. Piccazzo, L. Cevasco, A. Piccardo, F. Pinna, F. Belli, L. Bacigalupo, E. Biscaldi, G. De Caro, and G. A. Rollandi, "Advantages of percutaneous abdominal biopsy under PET-CT/ultrasound fusion imaging guidance: a pictorial essay," Abdom. Imaging, 39, 1102-1113 (2014). https://doi.org/10.1007/s00261-014-0143-8
  6. F. Lindseth, J. H. Kaspersen, S. Ommedal, T. Lango, J. Bang, J. Hokland, G. Unsgaard, and T. A. N. Hernes, "Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound," Comput. Aided Surg. 8, 49-69 (2003). https://doi.org/10.3109/10929080309146040
  7. F. Hasford, J. Amuasi, A. Kyere, and M. Vangu," Ultrasound and PET-CT image fusion for prostate brachytherapy image guidance," IAEA-CN-232, 47, 20-21 (2015).
  8. J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Sel. Topics. Quant. Electro. 5, 1205-1215 (1999). https://doi.org/10.1109/2944.796348
  9. J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, "Integrated intravascular optical coherence tomography ultrasound imaging system," J. Biomed. Opt. 15, 010512 (2010).
  10. S. Liang, T. Ma, J. Jing, X. Li, J. Li, K. K. Shung, Q. Zhou, J. Zhang, and Z. Chen, "Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging," Opt. Lett. 39, 6652-6655 (2014). https://doi.org/10.1364/OL.39.006652
  11. A. F. Kukk, D. Wu, E. Gaffal, R. Panzer, S. Emmert, and B. Roth, "Multimodal system for optical biopsy of melanoma with integrated ultrasound, optical coherence tomography and Raman spectroscopy," J. Biophotonics, 15, e202200129 (2022). https://doi.org/10.35272/JAET.2022.15.2.65
  12. H. Kang, X. Qian, R. Chen, R. Wodnicki, Y. Sun, R. Li, Y. Li, K. K. Shung, Z. Chen, and Q. Zhou, "2-D ultrasonic array-based optical coherence elastography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68, 1096-1104 (2020). https://doi.org/10.1109/TUFFC.2020.3033304
  13. M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
  14. C. Kim, C. Favazza, and L. V. Wang, "In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths," Chem. Rev. 110, 2756-2782 (2010). https://doi.org/10.1021/cr900266s
  15. Y. Yang, X. Li, T. Wang, P. D. Kumavor, A. Aguirre, K. K. Shung, Q. Zhou, M. Sanders, M. Brewer, and Q. Zhu, "Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization," Biomed. Opt. Express, 2, 2551-2561 (2011). https://doi.org/10.1364/BOE.2.002551
  16. W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, "Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging," J. Biomed. Opt. 16, 106001 (2011).
  17. J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K.K. Shung, and L. V. Wang, "Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo," Nat. Med. 18, 1297-1302 (2012). https://doi.org/10.1038/nm.2823
  18. Z. Wang, F . Yang, H. Ma, Z. Cheng, and S. Yang, "Photoacoustic and ultrasound (PAUS) dermoscope with high sensitivity and penetration depth by using a bimorph transducer," J. Biophotonics, 13, e202000145 (2020).
  19. S. Park, S. Kang, and J. H. Chang, "Optically transparent focused transducers for combined photoacoustic and ultrasound microscopy," J. Med. Biol. Eng. 40, 707-718 (2020). https://doi.org/10.1007/s40846-020-00536-5
  20. H. Chen, S. Agrawal, M. Osman, J. Minotto, S. Mirg, J. Liu, A. Dangi, Q. Tran, T. Jackson, and S.-R. Kothapalli, "A transparent ultrasound array for real-time optical, ultrasound, and photoacoustic imaging," BME Frontiers, 2022 1-14 (2022). https://doi.org/10.34133/2022/9871098
  21. A. R. Valimukhametova, O. S. Zub, B. H. Lee, O. Fannon, S. Nguyen, R. Gonzalez-Rodriguez, G. R. Akkaraju, and A.V. Naumov, "Dual-mode fluorescence/ultrasound imaging with biocompatible metal-doped graphene quantum dots," ACS Biomater. Sci Eng. 8, 4965-4975 (2022). https://doi.org/10.1021/acsbiomaterials.2c00794
  22. T. Yao, S. Yu, Y. Liu, and B. Yuan, "In vivo ultrasound-switchable fluorescence imaging," Sci. Rep. 9, 9855 (2019).
  23. C. S. Snyder, S. Kaushal, Y. Kono, H. S. Tran Cao, R. M. Hoffman, and M. Bouvet, "Complementarity of ultrasound and fluorescence imaging in an orthotopic mouse model of pancreatic cancer," BMC Cancer, 9, 106-115 (2009). https://doi.org/10.1186/1471-2407-9-106
  24. H. Estrada, J. Robin, A. Ozbek, Z. Chen, A. Marowsky, Q. Zhou, D. Beck, B. le Roy, M. Arand, S. Shoham, and D. Razansky, "High-resolution fluorescence-guided transcranial ultrasound mapping in the live mouse brain," Sci. Adv. 7, eabi5464 (2021).
  25. P. Rauschendorfer, G. Wissmeyer, F. A. Jaffer, D. Gorpas, and V. Ntziachristos, "Accounting for blood attenuation in intravascular near-infrared fluorescence-ultrasound imaging using a fluorophore-coated guidewire," J. Biomed. Opt. 28, 046001 (2023).
  26. H. Kim, S. Youn, J. Kim, S. Park, M. Lee, J. Y. Hwang, and J. H. Chang, "Deep laser microscopy using optical clearing by ultrasound-induced gas bubbles," Nat. Phot. 16, 762-768 (2022). https://doi.org/10.1038/s41566-022-01068-x
  27. D. Gorpas, H. Fatakdawala, J. Bec, D. Ma, D. R. Yankelevich, J. Qi, and L. Marcu, "Fluorescence lifetime imaging and intravascular ultrasound: co-registration study using ex vivo human coronaries," IEEE Trans. Med. Imaging, 34, 156-166 (2015). https://doi.org/10.1109/TMI.2014.2350491
  28. D. Ma, J. Bec, D. R. Yankelevich, D. Gorpas, H. Fatakdawala, and L. Marcu, "Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications," J. Biomed. Opt. 19, 066004 (2014).
  29. H. Fatakdawala, S. Poti, F. Zhou, Y. Sun, J. Bec, J. Liu, D. R. Yankelevich, S. P. Tinling, R. F. Gandour-Edwards, D. G. Farwell, and L. Marcu, "Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques," Biomed. Opt. Express, 4, 1724-1741 (2013). https://doi.org/10.1364/BOE.4.001724
  30. J. Kim, A. Seo, J. -Y. Kim, S. H. Choi, H .-J. Yoon, E. Kim, and J. Y. Hwang, "A multimodal biomicroscopic system based on high-frequency acoustic radiation force impulse and multispectral imaging techniques for tumor characterization ex vivo," Sci. Rep. 7, 17518 (2017).
  31. J. Kim, H. M. Lew, J. -H. Kim, S. Youn, H. Al Faruque, A. N. Seo, S. Y. Park, J. H. Chang, E. Kim, and J. Y. Hwang, "Forward-looking multimodal endoscopic system based on optical multispectral and high-frequency ultrasound imaging techniques for tumor detection," IEEE Trans. Med. Imaging, 40, 594-606 (2020). https://doi.org/10.1109/TMI.2020.3032275
  32. O. Ronneberger, P. Fischer, and T. Brox. "U-net: convolutional networks for biomedical image segmentation," Proc. MICCAI, 234-241 (2015).
  33. Y. Guo, G. Wu, J. Stein, and A. Krishnamurthy, "SAU-Net: A universal deep network for cell counting," Proc. 10th ACM Int. Con. Bioinfo. Comput. Biol. Health Info. 299-306 (2019).