References
- M. Bidkham and S. Ahmadi, Generalization of the Gauss-Lucas theorem for bicomplex polynomials, Turk. J. Math. 41 (2017), 1618-1627. https://doi.org/10.3906/mat-1512-19
- N. Carney, R. Gardner, R. Keaton, and A. Powers, The Enestrom-Kakeya theorem of a quaternionic variable, J. Appl. Theory 250 (2020), 105-325.
- J. B. Conway, Function of one complex variable, 2nd edition Springer-Verlag, 1978.
- N. K. Govil and Q. I. Rahman, On the Enestrom-Kakeya theorem II, Tohoku Math. J. 20 (1968), 126-136. https://doi.org/10.2748/tmj/1178243172
- A. Joyal, G. Labelle, and Q. I. Rahman, On the location of zeros of polynomials, Can. Math. Bull. 10 (1967), 53-63. https://doi.org/10.4153/CMB-1967-006-3
- J. Kumar and R. K. Srivastava, On a class of entire bicomplex sequences, South East Asian J. Math. Sci. 5 (3) (2007), 47-67.
- M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, and A. Vajiac, Bi-complex Holomorphic Functions, The Algebra, Geometry and Analysis of Bi-complex Numbers. Birkhauser (2015).
- M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, and A. Vajiac, Bi-complex numbers and their elementary functions, Cubo 14 (2) (2012), 61-80. https://doi.org/10.4067/S0719-06462012000200004
- M. Marden, Geometry of Polynomials, Math. Surveys, No. 3, Amer. Math. Soc. (1966).
- A. A Pogorui and R. M. Rodriguez-dagnino, On the set of zeros of bi-complex polynomials, Complex Variables and Elliptic Equations 51:7 (2006), 725-730. https://doi.org/10.1080/17476930600757139
- G. B. Price, An Introduction to Multicomplex Spaces and Functions, Monographs and Textbooks in Pure and Applied Mathematics, 140, Marcel Dekker, Inc., New York, 1991.
- C. Segre, Le rappresentation reali delle forme complesse e gli enti iperalgebrici, Math. Ann. 40 (1892), 413-467. https://doi.org/10.1007/BF01443559
- W. M. Shah and A. Liman, On Enestrom-Kakeya theorem and related analytic functions, Proc. Indian Acad. Sci. 3 (2007), 359-370.