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PARTIAL SUMS AND NEIGHBORHOODS OF JANOWSKI-TYPE

SUBCLASSES OF MEROMORPHIC FUNCTIONS

Abdullah Alatawi∗ and Maslina Darus

Abstract. The paper presents the introduction of a novel linear derivative oper-
ator for meromorphic functions that are linked with q-calculus. Using the linear
derivative operator, a new category of meromorphic functions is generated in the
paper. We obtain sufficient conditions and show some properties of functions belong-
ing to these subclasses. The partial sums of its sequence and the q-neighborhoods
problem are solved.

1. Introduction

Quantum calculus known as q-calculus is sometimes described as limitless calculus.
It substitutes a difference operator for the classical derivative, allowing for the ma-
nipulation of sets of non-differentiable functions. Quantum difference operators play
an intriguing role in a variety of mathematical fields, including the geometric function
theory, calculus of variations, and relativity theory (see [2], [9], [27]). Kac & Cheung’s
and Gasper & Rahman’s books [7,13] cover a large number of fundamental aspects of
q-calculus.

We use the symbol Σ to represent the set of functions f that takes the following
form

(1) f(z) =
1

z
+
∞∑
n=1

anz
n, (an > 0)

that are analytic in the punctured open unit disk

U∗ = {z : z ∈ C : 0 < |z| < 1} = U \ {0}.

Tang et al. [28] introduced the q-derivative ∂q(f(z)) for meromorphic functions,
defined as follows:

(2) ∂qf(z) =
f(z)− f(qz)

(1− q)z
= − 1

qz2
+
∞∑
n=1

[n]qanz
n−1, (0 < q < 1),
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where

(3) [n]q =


1−qn
1−q , n ∈ C \ N

1 + q + q2 + . . . , n ∈ N.

If q → 1−, then [n]q → n and lim
q→1−

∂qf = f
′
.

More recently, Alatawi et al. [1] defined the q-derivative operator Dk
q : Σ → Σ as

below

D0
qf(z) = f(z)

Dk
qf(z) = qβz∂qD

k−1
q f(z) + (1 + β)Dk−1

q f(z).

Dk
qf(z) =

1

z
+
∞∑
n=1

(1 + β[n + 1]q)
kanz

n, (β ≤ 0, k ∈ N).(4)

Building on the research conducted in [19, 24], we introduce a subset denoted as
MSq[k;A,B], which is defined using the operator Dk

qf in the following manner:

Definition 1.1. A function f ∈ Σ is said to belong to the class Σq[k;A,B], if

(5)

∣∣∣∣∣ qz∂q
(
Dk
qf(z)

)
+ Dk

qf(z)

Bqz∂q
(
Dk
qf(z)

)
+ ADk

qf(z)

∣∣∣∣∣ < 1, (z ∈ U∗) ,

where k ∈ N0,−1 ≤ B < A ≤ 1 and q ∈ (0, 1).

Furthermore, a function

(6) f(z) =
1

z
+
∞∑
n=1

anz
n (an > 0, z ∈ U∗),

belongs to the class T Σq[k;A,B] if it meets the requirement stated in equation (5).

It’s worth noting that the previous definition is primarily inspired by the latest
research by Morga [19] and Srivastava et al. [24]

This paper’s primary goal is to introduce neighborhoods and partial sums of func-
tions that belong to the classes Σq[k;A,B] and T Σq[k;A,B]. Unless specified other-
wise, we’ll assume that –1 ≤ B < A ≤ 1 and q ∈ (0, 1) in this paper.

2. Coefficient Bonds

This section outlines the process of the sufficient conditions based on coefficient
estimates for functions f that are part of the subclasses Σq[k;A,B] and T Σq[k;A,B].

Theorem 2.1. Let f ∈ Σ as in (1) and satisfies the inequality

∞∑
n=1

(
(B + 1)q[n]q + A + 1

)
(1 + β[n+ 1]q)

kan ≤ (A− B),(7)

then f ∈ Σq[k;A,B].
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Proof. To prove that f ∈ Σq[k;A,B] satisfies a certain condition, it’s enough to
demonstrate that

(8) <e

{
qz∂q

(
Dk
qf(z)

)
+ Dk

qf(z)

Bqz∂q
(
Dk
qf(z)

)
+ ADk

qf(z)

}
> −1, (z ∈ U∗).

If the inequality (7) true and holds, we must show that

(9)
∣∣qz∂q (Dk

qf(z)
)

+ Dk
qf(z)

∣∣− ∣∣Bqz∂q (Dk
qf(z)

)
+ ADk

qf(z)
∣∣ ≤ 0.

Now∣∣∣qz∂q (Dkqf(z)
)

+ Dkqf(z)
∣∣∣− ∣∣∣Bqz∂q (Dkqf(z)

)
+ ADkqf(z)

∣∣∣
=

∣∣∣∣∣
∞∑
n=1

(q[n]q + 1)(1 + β[n + 1]q)
kanz

n

∣∣∣∣∣−
∣∣∣∣∣(A− B)

1

z
+
∞∑
n=1

(A + Bq[n]q)(1 + β[n + 1]q)
kanz

n

∣∣∣∣∣
≤
∞∑
n=1

(
(B + 1)q[n]q + A + 1

)
(1 + β[n + 1]q)

kan|z|n+1 − (A− B).

(10)

Since (10) holds for all r = |z|, 0 < r < 1, we have

∞∑
n=1

(
(B + 1)q[n]q + A + 1

)
(1 + β[n + 1]q)

kan − (A− B) ≤ 0,

by (7), which yields (9).

Theorem 2.2. Let f = 1
z

+
∞∑
n=1

|an|zn be analytic in U∗. Then f ∈ T Σq[k;A,B], if

and only if inequality (7) is satisfied. The result is sharp for the function f(z), which
is defined as

f(z) =
A− B(

(B + 1)q[n]q + A + 1
)
(1 + β[n + 1]q)k

zn, (n ≥ 1).(11)

Proof. Considering Theorem 2.1, it’s enough to prove the validity of the ”if” com-
ponent.
Assume that f ∈ T Σq[k;A,B]. Then, we have

(12) <e

{
qz∂q

(
Dk
qf(z)

)
+ Dk

qf(z)

Bqz∂q
(
Dk
qf(z)

)
+ ADk

qf(z)

}
> −1, (z ∈ U∗).

Since <e {f(z)} ≤ |f(z)| for all z ∈ U∗, then

(13) <e


∞∑
n=1

(q[n]q + 1)(1 + β[n + 1]q)
kanz

n+1

A− B +
∞∑
n=1

(A + Bq[n]q)(1 + β[n + 1]q)kanzn+1

 < 1,

for all z and the above equation is true. By letting z→ 1− on the real axis, we have
the following inequality

∞∑
n=1

(q[n]q + 1)(1 + β[n + 1]q)
kan ≤ A− B +

∞∑
n=1

(A + Bq[n]q)(1 + β[n + 1]q)
kan.
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Thus, we get the required inequality

∞∑
n=1

(q[n]q(B + 1) + (A + 1))(1 + β[n + 1]q)
kan ≤ A− B.

This concludes the demonstration of our theorem.

Theorem 2.3. Let f given by (6), 0 ≤ γj ≤ 1 and
∞∑
j=0

γj = 1. Then f ∈

T Σq[k;A,B], if and only if

(14) f(z) =
∞∑
j=0

γjfj,

where
(15)

f0(z) =
1

z
, fj(z) =

1

z
+

(
A− B(

q[j]q(B + 1) + (A + 1)
)
(1 + β[j + 1]q)k

)
zj, j = 1, 2, · · · .

Proof. Let

f(z) =
∞∑
j=0

γjfj

= γ0f0 +
∞∑
j=1

γjfj =
γ0
z

+
∞∑
j=1

γj

{
1

z
+

(
A− B(

q[j]q(B + 1) + (A + 1)
)
(1 + β[j + 1]q)k

)
zj

}
,

by applying condition we get (7 ),

∞∑
j=1

(
q[j]q(B + 1) + (A + 1)

)
(1 + β[j + 1]q)

k

(
A− B(

q[j]q(B + 1) + (A + 1)
)
(1 + β[j + 1]q)k

γj

)

= (1− α)
∞∑
j=1

γj = (1− α)(1− γ1) ≤ A− B.

This means that f ∈ T Σq[k;A,B].

Conversely, Let f ∈ T Σq[k;A,B]. By setting

γj =
∞∑
j=1

(
q[j]q(B + 1) + (A + 1)

)
(1 + β[j + 1]q)

kaj (0 ≤ γj ≤ 1),

γ0 = = 1−
∞∑
j=1

γj .
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As a result, the function f can be represented as

f(z) =
1

z
+
∞∑
j=1

ajz
j

=
1

z
+
∞∑
j=1

(
A− B(

q[j]q(B + 1) + (A + 1)
)
(1 + β[j + 1]q)k

γj

)
zj

= z0

(
1

z

)
+
∞∑
j=1

(
1

z
+

A− B(
q[j]q(B + 1) + (A + 1)

)
(1 + β[j + 1]q)k

zj

)
γj

=
∞∑
j=0

γjfj,

this concludes the demonstration of our theorem.

3. Neighborhoods and partial sums

Inspired by previous studies that used the conventional idea of neighborhoods for
analytic functions, such as Goodman [8], Silverman [25,26], Murugusundaramoorthy
and Velayudam [15], Darus and Ibrahim [5], and recently Altıntas and Owa [3], and
Elhaddad and Darus [6], we present the following:

For µ ≥ 0, −1 ≤ B < A ≤ 1 and f = 1
z

+
∞∑
n=1

|an|zn, we define the δ-nieghbourhoods

of f(z) by

(16) Nµ,q(f) =

{
g(z) =

1

z
+

∞∑
n=2

|bn|zn and

∞∑
n=2

(
(B+ 1)q[n]q + A+ 1

)
(1 + β[n+ 1]q)

k

A− B

∣∣|an| − |bn|∣∣ ≤ µ} .

Theorem 3.1. Let µ > 0 and −1 < A ≤ 0. If f ∈ Σ of the form (1) satisfies the
condition

f(z) + ε
z

1 + ε
∈ Σq[k;A,B](17)

for any complex number ε satisfying |ε| < δ, we have

Nµ,q(f) ⊂ Σq[k;A,B].

Proof. It is obvious from (5) and g(z) ∈ Σq[k;A,B] if and only if for any complex
number η with |η| = 1

z∂q
(
Dk
qg(z)

)
+ Dk

qg(z)

Bz∂q
(
Dk
qg(z)

)
+ ADk

qg(z)
6= η (z ∈ U∗),

this is the same as saying

g(z) ∗ h(z)

z−1
6= 0 (z ∈ U∗),(18)
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where

h(z) =
1

z
+
∞∑
n=1

cnz
n

=
1

z
+
∞∑
n=1

(
(1 + q[n]q)− η(A + q[n]qB)

)
(B− A) η

(1 + β[n + 1]q)
kzn.(19)

From (17), we have

|cn| =

∣∣∣∣∣
(
(1 + q[n]q)− η(A + q[n]qB)

)
(B− A) η

(1 + β[n + 1]q)
k

∣∣∣∣∣
≤
(
(1− A) + q[n]qη(1− B)

)
(B− A) η

(1 + β[n + 1]q)
k.(20)

If f(z) = 1
z

+
∞∑
n=1

anz
n, (an > 0) fulfills the condition (17), then (18) yields∣∣∣∣f(z) ∗ h(z)

z−1

∣∣∣∣ ≥ δ (z ∈ U∗).(21)

Now let ρ(z) = 1
z

+
∞∑
n=1

bnz
n ∈ Nmu,q(f), then

∣∣∣∣(ρ(z)− f(z)) ∗ h(z)

z−1

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

(bn − an)cnzn+1

∣∣∣∣∣
≤ |z|

∞∑
n=1

(
(1− A) + q[n]qη(1− B)

)
(B− A) η

(1 + β[n + 1]q)
k|bn − an|

< δ.

Thus for any complex number η satisfying |η| = 1, then

ρ(z) ∗ h(z)

z−1
6= 0 (z ∈ U∗),

this leads to the conclusion that ρ(z) ∈ Σq[k;A,B].

Theorem 3.2. Let −1 < A ≤ 0. If f ∈ Σ of the form (1) and sk(z) = 1
z

+
k−1∑
n=1

anz
n (k ≥ 2). Suppose that

∞∑
n=1

cn|an| ≤ 1,(22)

where

cn =

(
(1− A) + q[n]qη(1− B)

)
(B− A) η

(1 + β[n + 1]q)
k.

Then, we have
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1)f(z) ∈ Σq[k;A,B].

2) <e
{
f(z)

sk(z)

}
> 1− 1

ck−1
.(23)

3) <e
{
sk(z)

f(z)

}
>

ck−1
1 + ck−1

.(24)

The estimates are sharp.

Proof. (1) It is obvious that 1
z
∈ Σq[k;A,B]. Thus from Theorem 2.1, and the

condition (22), we have Nmu,q(1z ) ⊆ Σq[k;A,B]. This gives f(z) ∈ Σq[k;A,B].

(2) It is easy to see that 1 < ck < ck+1. Thus

k−2∑
n=1

|an|+ ck+1

∞∑
n=k−1

|an| ≤
∞∑
n=1

cn|an| ≤ 1.(25)

Let

h1 = ck−1

{
f(z)

sk(z)
−
(

1− 1

ck−1

)}
= 1 +

ck−1
∞∑

n=k−1
anz

n+1

1 +
k−2∑
n=1

anzn+1

.

It follows from ( 25) that

∣∣∣∣h1 − 1

h1 + 1

∣∣∣∣ ≤ ck−1
∞∑

n=k−1
|an|

2− 2
k−2∑
n=1

|an| − ck−1
∞∑

n=k−1
|an|
≤ 1, (z ∈ U∗).

From this we obtain the inequality (23).
If we take

f(z) =
1

z
− zk−1

ck−1
,(26)

then

f(z) = 1− zk

ck−1
−→ 1− 1

ck−1
as k −→ 1−.

This demonstrates that the bound in (23) is best possible for any k.

Similarly, assuming that we take

h2 = (1 + ck+1)

{
sk(z)

f(z)
−
(

ck−1
1 + ck−1

)}
= 1 +

(1 + ck−1)
∞∑

n=k−1
anz

n+1

1 +
∞∑
n=0

anzn+1

.
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Then, we deduce that

∣∣∣∣h2 − 1

h2 + 1

∣∣∣∣ ≤ (1 + ck−1)
∞∑

n=k−1
|an|

2− 2
k−2∑
n=1

|an|+ (1− ck−1)
∞∑

n=k−1
|an|
≤ 1, (z ∈ U∗),

which yields (24). The estimate (24) is sharp with the extremal function f(z) given
by (26).
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