DOI QR코드

DOI QR Code

Assessment of ECMWF's seasonal weather forecasting skill and Its applicability across South Korean catchments

ECMWF 계절 기상 전망 기술의 정확성 및 국내 유역단위 적용성 평가

  • Lee, Yong Shin (School of Civil, Aerospace and Design Engineering, University of Bristol) ;
  • Kang, Shin Uk (R&D Management Department, K-water Research Institute)
  • 이용신 (브리스톨대학교 토목우주항공디자인공학과) ;
  • 강신욱 (K-water연구원 연구관리처)
  • Received : 2023.05.31
  • Accepted : 2023.08.16
  • Published : 2023.09.30

Abstract

Due to the growing concern over forecasting extreme weather events such as droughts caused by climate change, there has been a rising interest in seasonal meteorological forecasts that offer ensemble predictions for the upcoming seven months. Nonetheless, limited research has been conducted in South Korea, particularly in assessing their effectiveness at the catchment-scale. In this study, we assessed the accuracy of ECMWF's seasonal forecasts (including precipitation, temperature, and evapotranspiration) for the period of 2011 to 2020. We focused on 12 multi-purpose reservoir catchments and compared the forecasts to climatology data. Continuous Ranked Probability Skill Score method is adopted to assess the forecast skill, and the linear scaling method was applied to evaluate its impact. The results showed that while the seasonal meteorological forecasts have similar skill to climatology for one month ahead, the skill decreased significantly as the forecast lead time increased. Compared to the climatology, better results were obtained in the Wet season than the Dry season. In particular, during the Wet seasons of the dry years (2015, 2017), the seasonal meteorological forecasts showed the highest skill for all lead times.

기후변화에 따른 가뭄 등 극한 기상을 예측하기 위해, 최근 전 세계적으로 GCMs 모델에 기반하여 향후 7개월까지를 전망하는 계절 기상 전망(Seasonal Forecasts) 기술이 꾸준히 관심을 받고 있다. 그러나 국내에서의 연구 및 적용사례는 많지 않으며, 특히 유역단위에서 그 활용성에 대해서는 검증이 필요하다. 따라서 본 연구에서는 국내 12개 다목적댐 유역에 대해 2011년부터 2020년까지 계절 기상 전망의 정확성을 과거 45년간의 기상 자료(climatology)와 비교하여 평가하였다. 본 연구에서는 ECMWF에서 제공하는 계절 기상 전망의 인자로 향후 수문전망에 활용성이 높은 강수, 기온 그리고 증발산을 선정하였고, 앙상블 전망의 정확성 평가를 위해 Continuous Ranked Probability Skill Score (CRPSS) 기법을 적용하였다. 또한, 계절 기상 전망에 대해 선형 편의 보정기법(Linear scaling)을 적용하여 그 효과를 평가하였다. 연구결과, 계절 기상 전망이 향후 1개월 간은 climatology와 유사한 정확도를 보이나 전망 리드타임이 증가함에 따라 그 정확도가 크게 낮아지는 특성을 나타냈다. Climatology와 비교하여, 계절적으로는 Dry season보다는 Wet season이 더 나은 결과를 보였으며, 특히 건조했던 2015년과 2017년의 Wet season에서는 장기간에 걸친 전망 정확도가 모두 높게 나타났다.

Keywords

Acknowledgement

본 연구는 한국수자원공사(K-water)의 지원을 받아 수행된 연구입니다.

References

  1. Arnal, L., Cloke, H.L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., and Pappenberger, F. (2018). "Skilful seasonal forecasts of streamflow over Europe?." Hydrology and Earth System Sciences, Vol. 22, pp. 2057-2072. https://doi.org/10.5194/hess-22-2057-2018
  2. Azman, A.H., Tukimat, N.N.A., and Malek, M.A. (2022). "Analysis of Linear scaling method in downscaling precipitation and temperature." Water Resources Management, Vol. 36, pp. 171-179. https://doi.org/10.1007/s11269-021-03020-0
  3. Bauer, P., Thorpe, A., and Brunet, G. (2015). "The quiet revolution of numerical weather prediction." Nature, Vol. 525, pp. 47-55. https://doi.org/10.1038/nature14956
  4. Bett, P.E., Martin, N., Scaife, A.A., Dunstone, N., Martin, G.M., Golding, N., Camp, J., Zhang, P., Hewitt, C.D., Hermanson, L., Li, C., Ren, H.-L., Liu, Y., and Liu, M. (2020). "Seasonal rainfall forecasts for the Yangtze River basin of China in summer 2019 from an improved climate service." Journal of Meteorological Research, Vol. 34, pp. 904-916. https://doi.org/10.1007/s13351-020-0049-z
  5. Boucher, M.-A., Tremblay, D., Delorme, L., Perreault, L., and Anctil, F. (2012). "Hydro-economic assessment of hydrological forecasting systems." Journal of Hydrology, Vol. 416-417, pp. 133-144. https://doi.org/10.1016/j.jhydrol.2011.11.042
  6. Brier, G.W. (1950). "Verification of forecasts expressed in terms of probability." Monthly Weather Review, Vol. 78, pp. 1-3. https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
  7. Brown, T.A. (1974). Admissible scoring systems for continuous distributions. Manuscript P-5235, The Rand Corporation, Santa Monica, CA, U.S., p. 22.
  8. Charles, A., Timbal, B., Fernandez, E., and Hendon, H. (2013). "Analog downscaling of seasonal rainfall forecasts in the Murray Darling basin." Monthly Weather Review, Vol. 141, pp. 1099-1117. https://doi.org/10.1175/MWR-D-12-00098.1
  9. Coelho, C.A., and Costa, S.M. (2010). "Challenges for integrating seasonal climate forecasts in user applications." Current Opinion in Environmental Sustainability, Vol. 2, pp. 317-325. https://doi.org/10.1016/j.cosust.2010.09.002
  10. Cook, B.I., Mankin, J.S., and Anchukaitis, K.J. (2018). "Climate change and drought: from past to future." Current Climate Change Reports, Vol. 4, pp. 164-179. https://doi.org/10.1007/s40641-018-0093-2
  11. Crochemore, L., Ramos, M.-H., and Pappenberger, F. (2016). "Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts." Hydrology and Earth System Sciences, Vol. 20, pp. 3601-3618. https://doi.org/10.5194/hess-20-3601-2016
  12. Epstein, E.S. (1969). "A Scoring system for probability forecasts of ranked categories." Journal of Applied Meteorology, Vol. 8, pp. 985-987. https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2
  13. Fan, X., Jiang, L., and Gou, J. (2021). "Statistical downscaling and projection of future temperatures across the Loess Plateau, China." Weather and Climate Extremes, Vol. 32, 100328.
  14. Ferreira, G.W.S., Reboita, M.S., and Drumond, A. (2022). "Evaluation of ECMWF-SEAS5 seasonal temperature and precipitation predictions over South America." Climate, Vol. 10, No. 9, 128.
  15. Gleick, P.H. (2002). "Water management: Soft water paths." Nature, Vol. 418, pp. 373-373. https://doi.org/10.1038/418373a
  16. Gleick, P.H. (2003). "Global freshwater resources: Soft-path solutions for the 21st century." Science, Vol. 302, No. 5650, pp. 1524-1528. doi: 10.1126/science.1089967.
  17. Greuell, W., Franssen, W.H.P., and Hutjes, R.W.A. (2019). "Seasonal streamflow forecasts for Europe - Part 2: Sources of skill." Hydrology and Earth System Sciences, Vol. 23, pp. 371-391. https://doi.org/10.5194/hess-23-371-2019
  18. Gubler, S., Sedlmeier, K., Bhend, J., Avalos, G., Coelho, C.A.S., Escajadillo, Y., Jacques-Coper, M., Martinez, R., Schwierz, C., de Skansi, M., and Spirig, CH. (2020). "Assessment of ECMWF SEAS5 seasonal forecast performance over South America." Weather and Forecasting, Vol. 35, pp. 561-584.
  19. Hyun, Y.-K., Park, J., Lee, J., Lim, S., Heo, S.-I., Ham, H., Lee, S.-M., Ji, H.-S and Kim, Y. (2020). "Reliability assessment of temperature and precipitation seasonal probability in current climate prediction systems." Atmosphere. Korean Meteorological Society, Vol. 30, pp. 141-154. https://doi.org/10.14191/ATMOS.2020.30.2.141
  20. Jin, Y.-H., Kawamura, A., Jinno, K., and Berndtsson, R. (2005). "Detection of ENSO-influence on the monthly precipitation in South Korea." Hydrological Processes, Vol. 19, pp. 4081-4092. https://doi.org/10.1002/hyp.5873
  21. Keller, A.A., Garner, K.L., Rao, N., Knipping, E., and Thomas, J. (2022). "Downscaling approaches of climate change projections for watershed modeling: Review of theoretical and practical considerations." PLOS WATER, Vol. 1, e0000046.
  22. Kim, C.-G., Lee, J., Lee, J.E., Kim, N.W., and Kim, H. (2020). "Monthly precipitation forecasting in the Han River basin, South Korea, using large-scale teleconnections and multiple regression models." Water, Vol. 12, 1590.
  23. Kim, H., Lee, J., Lim, S., Hyun, Y.-K., and Hwang, S.O. (2021). "The KMA global seasonal forecasting system (GloSea6) - Part 1: Operational system and improvements." Atmosphere. Korean Meteorological Society, Vol. 31, pp. 341-359. https://doi.org/10.14191/ATMOS.2021.31.3.341
  24. Kim, S., and Kug, J. (2018). "What controls ENSO teleconnection to East Asia? Role of Western North Pacific precipitation in ENSO teleconnection to East Asia." Journal of Geophysical Research: Atmospheres, Vol. 123, pp. 10406-10422. https://doi.org/10.1029/2018JD028935
  25. Kolachian, R., and Saghafian, B. (2019). "Deterministic and probabilistic evaluation of raw and post processed sub-seasonal to seasonal precipitation forecasts in different precipitation regimes." Theoretical and Applied Climatology, Vol. 137, pp. 1479-1493. https://doi.org/10.1007/s00704-018-2680-5
  26. Lee, J.H., and Julien, P.Y. (2016). "Teleconnections of the ENSO and South Korean precipitation patterns." Journal of Hydrology, Vol. 534, pp. 237-250. https://doi.org/10.1016/j.jhydrol.2016.01.011
  27. Lee, S.-M., Kang, H.-S., Kim, Y.-H., Byun, Y.-H., and Cho, C. (2016). "Verification and comparison of forecast skill between global seasonal forecasting system version 5 and unified model during 2014." Atmosphere. Korean Meteorological Society, Vol. 26, pp. 59-72. https://doi.org/10.14191/ATMOS.2016.26.1.059
  28. Leutbecher, M., and Haiden, T. (2020). "Understanding changes of the continuous ranked probability score using a homogeneous Gaussian approximation." Quarterly Journal of the Royal Meteorological Society, Vol. 147, pp. 425-442. https://doi.org/10.1002/qj.3926
  29. Maraun, D. (2016). "Bias correcting climate change simulations - a critical review." Current Climate Change Reports, Vol. 2, pp. 211-220. https://doi.org/10.1007/s40641-016-0050-x
  30. Matheson, J.E., and Winkler, R.L. (1976). "Scoring rules for continuous probability distributions." Management Science, Vol. 22, No. 10, pp. 1087-1096. https://doi.org/10.1287/mnsc.22.10.1087
  31. Monhart, S., Spirig, C., Bhend, J., Bogner, K., Schar, C., and Liniger, M.A. (2018). "Skill of Subseasonal forecasts in Europe: Effect of bias correction and downscaling using surface observations." Journal of Geophysical Research: Atmospheres, Vol. 123, pp. 7999-8016. https://doi.org/10.1029/2017JD027923
  32. Noh, G.-H., and Ahn, K.-H. (2022). "Long-lead predictions of early winter precipitation over South Korea using a SST anomaly pattern in the North Atlantic Ocean." Climate Dynamics, Vol. 58, pp. 3455-3469. https://doi.org/10.1007/s00382-021-06109-9
  33. Ogutu, G.E.O., Franssen, W.H.P., Supit, I., Omondi, P., and Hutjes, R.W.A. (2016). "Skill of ECMWF system-4 ensemble seasonal climate forecasts for East Africa." International Journal of climatology, Vol. 37, pp. 2734-2756.
  34. Peng, Z., Wang, Q.J., Bennett, J.C., Pokhrel, P., and Wang, Z. (2014). "Seasonal precipitation forecasts over China using monthly large-scale oceanic-atmospheric indices." Journal of Hydrology, Vol. 519, pp. 792-802. https://doi.org/10.1016/j.jhydrol.2014.08.012
  35. Portele, T., Lorenz, C., Berhon Dibrani, Laux, P., Bliefernicht, J., and Kunstmann, H. (2021). "Seasonal forecasts offer economic benefit for hydrological decision making in semi-arid regions." Scientific Reports, Vol. 11, 10581.
  36. Ratri, D.N., Whan, K., and Sschmeits, M. (2021). "Calibration of ECMWF seasonal ensemble precipitation reforecasts in Java (Indonesia) using bias-corrected precipitation and climate indices." Weather and Forecasting, Vol. 36, pp. 1375-1386. https://doi.org/10.1175/WAF-D-20-0124.1
  37. Roy, T., He, X., Lin, P., Beck, H.E., Castro, C., and Wood, E.F. (2020). "Global evaluation of seasonal precipitation and temperature forecasts from NMME." Journal of Hydrometeorology, Vol. 21, pp. 2473-2486. https://doi.org/10.1175/JHM-D-19-0095.1
  38. Shrestha, M., Acharya, S.C., and Shrestha, P.K. (2017). "Bias correction of climate models for hydrological modelling - are simple methods still useful?." Meteorological Applications, Vol. 24, No. 3, pp. 531-539. https://doi.org/10.1002/met.1655
  39. Shrestha, S., Shrestha, M., and Babel, Mukand.S. (2016). "Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, Nepal." Environmental Earth Sciences, Vol. 75. pp. 1-13. https://doi.org/10.1007/s12665-015-4873-x
  40. Son, H.-Y., Park, J.-Y., and Kug, J.-S. (2015). "Precipitation variability in September over the Korean Peninsula during ENSO developing phase." Climate Dynamics, Vol. 46, pp. 3419-3430.
  41. Tabari, H., Paz, S.M., Buekenhout, D., and Willems, P. (2021). "Comparison of statistical downscaling methods for climate change impact analysis on precipitation-driven drought." Hydrology and Earth System Sciences, Vol. 25, pp. 3493-3517. https://doi.org/10.5194/hess-25-3493-2021
  42. Tchinda, A.F., Tanessong, R.S., Mamadou, O., and Orou, J.B.C. (2022). "Assessing precipitation seasonal forecasts in Central Africa using North American Multimodel Ensemble (NMME)." Theoretical and Applied Climatology, Vol. 147, pp. 1309-1325. https://doi.org/10.1007/s00704-021-03915-3
  43. Weisheimer, A., and Palmer, T.N. (2014). "On the reliability of seasonal climate forecasts." Journal of The Royal Society Interface, Vol. 11, 20131162.
  44. Zarei, M., Najarchi, M., and Mastouri, R. (2021). "Bias correction of global ensemble precipitation forecasts by Random Forest method." Earth Science Informatics, Vol. 14, pp. 677-689. https://doi.org/10.1007/s12145-021-00577-7