과제정보
The authors would like to gratefully thank the referee for the constructive comments and recommendations which definitely helped to improve the readability and quality of the paper.
참고문헌
- M. Akyigit, K. Eren, and H. H. Kosal, Tubular surfaces with modified orthogonal frame in Euclidean 3-space, Honam Math. J. 43 (2021), no. 3, 453-463. https://doi.org/10.5831/HMJ.2021.43.3.453
- M. Altin and A. Kazan, Rotational hypersurfaces in Lorentz-Minkowski 4-space, Hacet. J. Math. Stat. 50 (2021), no. 5, 1409-1433. https://doi.org/10.15672/hujms.826596
- M. Altin, A. Kazan, and H. B. Karadag, Monge hypersurfaces in Euclidean 4-space with density, J. Polytechnic 23 (2020), no. 1, 207-214.
- M. Altin, A. Kazan, and D. W. Yoon, 2-ruled hypersurfaces in Euclidean 4-space, J. Geom. Phys. 166 (2021), Paper No. 104236, 13 pp. https://doi.org/10.1016/j.geomphys.2021.104236
- S. Aslan and Y. Yayli, Canal surfaces with quaternions, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 31-38. https://doi.org/10.1007/s00006-015-0602-5
- M. E. Aydin and I. Mihai, On certain surfaces in the isotropic 4-space, Math. Commun. 22 (2017), no. 1, 41-51.
- F. Dogan and Y. Yayli, Tubes with Darboux frame, Int. J. Contemp. Math. Sci. 7 (2012), no. 13-16, 751-758.
- X. Fu, S. D. Jung, J. Qian, and M. Su, Geometric characterizations of canal surfaces in Minkowski 3-space I, Bull. Korean Math. Soc. 56 (2019), no. 4, 867-883. https://doi.org/10.4134/BKMS.b180643
- R. A. Garcia, J. Llibre, and J. Sotomayor, Lines of principal curvature on canal surfaces in ℝ3, An. Acad. Brasil. Cienc. 78 (2006), no. 3, 405-415. https://doi.org/10.1590/S0001-37652006000300002
- E. Guler, Helical hypersurfaces in Minkowski geometry E41, Symmetry 12 (2020), no. 8, 1206.
- E. Hartman, Geometry and Algorithms for Computer Aided Design, Dept. of Math. Darmstadt Univ. of Technology, 2003.
- S. Izumiya and M. Takahashi, On caustics of submanifolds and canal hypersurfaces in Euclidean space, Topology Appl. 159 (2012), no. 2, 501-508. https://doi.org/10.1016/j.topol.2011.09.025
- M. K. Karacan and B. Bukcu, An alternative moving frame for a tubular surface around a spacelike curve with a spacelike normal in Minkowski 3-space, Rend. Circ. Mat. Palermo (2) 57 (2008), no. 2, 193-201. https://doi.org/10.1007/s12215-008-0013-8
- M. K. Karacan, H. Es, and Y. Yayli, Singular points of tubular surfaces in Minkowski 3-space, Sarajevo J. Math. 2 (2006), no. 1, 73-82.
- M. K. Karacan and Y. Tuncer, Tubular surfaces of Weingarten types in Galilean and pseudo-Galilean, Bull. Math. Anal. Appl. 5 (2013), no. 2, 87-100.
- M. K. Karacan, D. W. Yoon, and Tuncer, Tubular surfaces of Weingarten types in Minkowski 3-space, Gen. Math. Notes 22 (2014), no. 1, 44-56.
- A. Kazan, M. Altin, and D. W. Yoon, Geometric characterizations of canal hypersurfaces in Euclidean spaces, Filomat 37 (2023), no. 18, 5909-5920. https://doi.org/10.2298/FIL2318909K
- Y. H. Kim, H. Liu, and J. H. Qian, Some characterizations of canal surfaces, Bull. Korean Math. Soc. 53 (2016), no. 2, 461-477. https://doi.org/10.4134/BKMS.2016.53.2.461
- I. Kisi, G. Ozturk, and K. Arslan, A new type of canal surface in Euclidean 4-space E4, Sakarya Univ. J. Sci. 23 (2019), no. 5, 801-809. https://doi.org/10.16984/saufenbilder.524471
- S. Kiziltug, M. Dede, and C. Ekici, Tubular surfaces with Darboux frame in Galilean 3-space, Facta Univ. Ser. Math. Inform. 34 (2019), no. 2, 253-260.
- S. N. Krivoshapko and C. A. B. Hyeng, Classification of cyclic surfaces and geometrical research of canal surfaces, Int. J. Res. Rev. Appl. Sci. 12 (2012), no. 3, 360-374.
- W. Kuhnel, Differential geometry: curves-surfaces-manifolds, American Mathematical Soc., Braunschweig, Wiesbaden, 1999. https://doi.org/10.1007/978-3-322-93981-4
- J. M. Lee, Riemannian Manifolds, Graduate Texts in Mathematics, 176, Springer, New York, 1997. https://doi.org/10.1007/b98852
- T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and G. Yu, Analysis and applications of pipe surfaces, Comput. Aided Geom. Design 15 (1998), no. 5, 437-458. https://doi.org/10.1016/S0167-8396(97)00042-3
- M. Peternell and H. Pottmann, Computing rational parametrizations of canal surfaces, J. Symbolic Comput. 23 (1997), no. 2-3, 255-266. https://doi.org/10.1006/jsco.1996.0087
- J. Qian, M. Su, X. Fu, and S. D. Jung, Geometric characterizations of Canal surfaces in Minkowski 3-space II, Mathematics 7 (2019), no. 8, 703.
- J. S. Ro and D. W. Yoon, Tubes of Weingarten type in a Euclidean 3-space, J. Chungcheong Math. Soc. 22 (2009), no. 3, 359-366.
- A. Ucum and K. ˙Ilarslan, New types of canal surfaces in Minkowski 3-space, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 449-468. https://doi.org/10.1007/s00006-015-0556-7
- J. Walrave, Curves and surfaces in Minkowski space, Dissertation, K. U. Leuven, Fac. of Science, Leuven, 1995.
- Z. Xu, R. Z. Feng, and J. G. Sun, Analytic and algebraic properties of canal surfaces, J. Comput. Appl. Math. 195 (2006), no. 1-2, 220-228. https://doi.org/10.1016/j.cam.2005.08.002
- D. W. Yoon and Z. K. Yuzbasi, Tubular surfaces with Galilean Darboux frame in G3, J. Math. Phys. Anal. Geom. 15 (2019), no. 2, 278-287. https://doi.org/10.15407/mag15.02.278