DOI QR코드

DOI QR Code

CANAL HYPERSURFACES GENERATED BY NON-NULL CURVES IN LORENTZ-MINKOWSKI 4-SPACE

  • Mustafa Altin (Technical Sciences Vocational School Bingol University) ;
  • Ahmet Kazan (Department of Computer Technologies Malatya Turgut Ozal University) ;
  • Dae Won Yoon (Department of Mathematics Education and RINS Gyeongsang National University)
  • 투고 : 2022.09.30
  • 심사 : 2023.05.31
  • 발행 : 2023.09.30

초록

In the present paper, firstly we obtain the general expression of the canal hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres, pseudo hyperbolic hyperspheres and null hyper-cones whose centers lie on a non-null curve with non-null Frenet vector fields in E41 and give their some geometric invariants such as unit normal vector fields, Gaussian curvatures, mean curvatures and principal curvatures. Also, we give some results about their flatness and minimality conditions and Weingarten canal hypersurfaces. Also, we obtain these characterizations for tubular hypersurfaces in E41 by taking constant radius function and finally, we construct some examples and visualize them with the aid of Mathematica.

키워드

과제정보

The authors would like to gratefully thank the referee for the constructive comments and recommendations which definitely helped to improve the readability and quality of the paper.

참고문헌

  1. M. Akyigit, K. Eren, and H. H. Kosal, Tubular surfaces with modified orthogonal frame in Euclidean 3-space, Honam Math. J. 43 (2021), no. 3, 453-463. https://doi.org/10.5831/HMJ.2021.43.3.453
  2. M. Altin and A. Kazan, Rotational hypersurfaces in Lorentz-Minkowski 4-space, Hacet. J. Math. Stat. 50 (2021), no. 5, 1409-1433. https://doi.org/10.15672/hujms.826596
  3. M. Altin, A. Kazan, and H. B. Karadag, Monge hypersurfaces in Euclidean 4-space with density, J. Polytechnic 23 (2020), no. 1, 207-214.
  4. M. Altin, A. Kazan, and D. W. Yoon, 2-ruled hypersurfaces in Euclidean 4-space, J. Geom. Phys. 166 (2021), Paper No. 104236, 13 pp. https://doi.org/10.1016/j.geomphys.2021.104236
  5. S. Aslan and Y. Yayli, Canal surfaces with quaternions, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 31-38. https://doi.org/10.1007/s00006-015-0602-5
  6. M. E. Aydin and I. Mihai, On certain surfaces in the isotropic 4-space, Math. Commun. 22 (2017), no. 1, 41-51.
  7. F. Dogan and Y. Yayli, Tubes with Darboux frame, Int. J. Contemp. Math. Sci. 7 (2012), no. 13-16, 751-758.
  8. X. Fu, S. D. Jung, J. Qian, and M. Su, Geometric characterizations of canal surfaces in Minkowski 3-space I, Bull. Korean Math. Soc. 56 (2019), no. 4, 867-883. https://doi.org/10.4134/BKMS.b180643
  9. R. A. Garcia, J. Llibre, and J. Sotomayor, Lines of principal curvature on canal surfaces in ℝ3, An. Acad. Brasil. Cienc. 78 (2006), no. 3, 405-415. https://doi.org/10.1590/S0001-37652006000300002
  10. E. Guler, Helical hypersurfaces in Minkowski geometry E41, Symmetry 12 (2020), no. 8, 1206.
  11. E. Hartman, Geometry and Algorithms for Computer Aided Design, Dept. of Math. Darmstadt Univ. of Technology, 2003.
  12. S. Izumiya and M. Takahashi, On caustics of submanifolds and canal hypersurfaces in Euclidean space, Topology Appl. 159 (2012), no. 2, 501-508. https://doi.org/10.1016/j.topol.2011.09.025
  13. M. K. Karacan and B. Bukcu, An alternative moving frame for a tubular surface around a spacelike curve with a spacelike normal in Minkowski 3-space, Rend. Circ. Mat. Palermo (2) 57 (2008), no. 2, 193-201. https://doi.org/10.1007/s12215-008-0013-8
  14. M. K. Karacan, H. Es, and Y. Yayli, Singular points of tubular surfaces in Minkowski 3-space, Sarajevo J. Math. 2 (2006), no. 1, 73-82.
  15. M. K. Karacan and Y. Tuncer, Tubular surfaces of Weingarten types in Galilean and pseudo-Galilean, Bull. Math. Anal. Appl. 5 (2013), no. 2, 87-100.
  16. M. K. Karacan, D. W. Yoon, and Tuncer, Tubular surfaces of Weingarten types in Minkowski 3-space, Gen. Math. Notes 22 (2014), no. 1, 44-56.
  17. A. Kazan, M. Altin, and D. W. Yoon, Geometric characterizations of canal hypersurfaces in Euclidean spaces, Filomat 37 (2023), no. 18, 5909-5920. https://doi.org/10.2298/FIL2318909K
  18. Y. H. Kim, H. Liu, and J. H. Qian, Some characterizations of canal surfaces, Bull. Korean Math. Soc. 53 (2016), no. 2, 461-477. https://doi.org/10.4134/BKMS.2016.53.2.461
  19. I. Kisi, G. Ozturk, and K. Arslan, A new type of canal surface in Euclidean 4-space E4, Sakarya Univ. J. Sci. 23 (2019), no. 5, 801-809. https://doi.org/10.16984/saufenbilder.524471
  20. S. Kiziltug, M. Dede, and C. Ekici, Tubular surfaces with Darboux frame in Galilean 3-space, Facta Univ. Ser. Math. Inform. 34 (2019), no. 2, 253-260.
  21. S. N. Krivoshapko and C. A. B. Hyeng, Classification of cyclic surfaces and geometrical research of canal surfaces, Int. J. Res. Rev. Appl. Sci. 12 (2012), no. 3, 360-374.
  22. W. Kuhnel, Differential geometry: curves-surfaces-manifolds, American Mathematical Soc., Braunschweig, Wiesbaden, 1999. https://doi.org/10.1007/978-3-322-93981-4
  23. J. M. Lee, Riemannian Manifolds, Graduate Texts in Mathematics, 176, Springer, New York, 1997. https://doi.org/10.1007/b98852
  24. T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and G. Yu, Analysis and applications of pipe surfaces, Comput. Aided Geom. Design 15 (1998), no. 5, 437-458. https://doi.org/10.1016/S0167-8396(97)00042-3
  25. M. Peternell and H. Pottmann, Computing rational parametrizations of canal surfaces, J. Symbolic Comput. 23 (1997), no. 2-3, 255-266. https://doi.org/10.1006/jsco.1996.0087
  26. J. Qian, M. Su, X. Fu, and S. D. Jung, Geometric characterizations of Canal surfaces in Minkowski 3-space II, Mathematics 7 (2019), no. 8, 703.
  27. J. S. Ro and D. W. Yoon, Tubes of Weingarten type in a Euclidean 3-space, J. Chungcheong Math. Soc. 22 (2009), no. 3, 359-366.
  28. A. Ucum and K. ˙Ilarslan, New types of canal surfaces in Minkowski 3-space, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 449-468. https://doi.org/10.1007/s00006-015-0556-7
  29. J. Walrave, Curves and surfaces in Minkowski space, Dissertation, K. U. Leuven, Fac. of Science, Leuven, 1995.
  30. Z. Xu, R. Z. Feng, and J. G. Sun, Analytic and algebraic properties of canal surfaces, J. Comput. Appl. Math. 195 (2006), no. 1-2, 220-228. https://doi.org/10.1016/j.cam.2005.08.002
  31. D. W. Yoon and Z. K. Yuzbasi, Tubular surfaces with Galilean Darboux frame in G3, J. Math. Phys. Anal. Geom. 15 (2019), no. 2, 278-287. https://doi.org/10.15407/mag15.02.278