DOI QR코드

DOI QR Code

이층지반에 설치된 무리말뚝의 동적 거동 분석

Analysis of Dynamic Behavior on Group Piles in Two-Layered Sandy Ground

  • 투고 : 2023.09.07
  • 심사 : 2023.09.22
  • 발행 : 2023.10.01

초록

지진 시 상부구조물을 지지하는 무리말뚝의 동적거동은 상부구조물의 관성력과 지반의 운동력에 의해 서로 다른 복잡한 동적 메커니즘에 영향을 받는다. 지진 시 상부구조물의 관성력과 지반의 운동력에 의한 지반, 말뚝기초, 상부구조물의 상호작용을 고려하여 말뚝기초의 동적거동을 분석하는 방법으로 동적 p-y 곡선이 사용되고 있다. 말뚝기초의 동적 p-y 곡선을 확인하기 위한 대부분의 연구는 사질토 및 점성토로 이루어진 단일지반에 설치된 말뚝기초를 대상으로 확인되었을 뿐 다층지반에 설치된 말뚝기초의 동적 p-y 곡선을 확인하기 위한 연구는 미비한 실정이다. 이에 본 연구에서는 서로 다른 상대밀도를 갖는 이층지반의 상·하지반의 지층비가 상부구조물을 지지하는 무리말뚝의 동적거동에 미치는 영향을 확인하기 위해 1g 진동대 모형실험을 수행하였다. 그 결과 지층비가 증가할수록 지반, 말뚝캡, 상부구조물에서의 최대가속도는 증가하고, 말뚝기초의 최대휨모멘트의 발생 위치는 변화하는 것으로 나타났다. 그리고 말뚝기초의 동적 p-y 곡선의 기울기는 지층비에 따라 감소 및 증가하는 것으로 확인되었다.

The dynamic behavior of the group piles supporting the superstructure in an earthquake is influenced by different complex dynamic mechanisms by the inertia force of the superstructure and the kinematic force of the ground. In an earthquake, The dynamic p-y curve is used to analyze the dynamic behavior of the pile foundation in consideration of the interaction of the ground, pile foundation, and superstructure due to the inertia force and the kinematic force. Most of the research has been conducted in order to confirm the dynamic p-y curve of the pile foundation by applying to the pile foundation installed on the single layered ground consisting of sand and clay, but the research for the multiple layered ground is insufficient. In this study, 1g shaking table tests were conducted to analyze the effect of the strata ratio of the top and bottom ground of the two layered sandy ground which has different relative densities on the dynamic behavior of group piles supporting the superstructure. The result shows that the maximum acceleration in the ground, the pile cap, and the superstructure increases as the strata ratio increases, and the location of the maximum bending moment of the pile foundation is changed. In addition, it was confirmed that the slope of the dynamic p-y curve of the pile foundation increased and decreased according to the strata ratio.

키워드

참고문헌

  1. Ahn, K. K. (2003), Pile-soil-pile interaction in pile groups under lateral loading, Ph D. dissertation, Illinois Tech, Chicago, USA. 
  2. Broms, B.B. (1964a), Lateral resistance of piles in cohesive soils. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. SM 2, pp. 27~63.  https://doi.org/10.1061/JSFEAQ.0000611
  3. Broms, B.B. (1964b), Lateral resistance of piles in cohesionless soils, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. SM3, pp. 123~156.  https://doi.org/10.1061/JSFEAQ.0002132
  4. Chang, Y.L. (1937), Lateral pile-loading tests, ASCE, Vol. 102, pp. 272~278. 
  5. Han, J. T., Yoo, M. T., Choi, J. I. and Kim, M. M. (2010), A study on the dynamic p-y curves in soft clay by 1 g shaking table tests, Journal of Korean Geotechnical Society, Vol. 26, No. 8, pp. 67~75 (In Korean). 
  6. Iai, S. (1989), Similitude for shaking table tests on soilstructure fluid model in 1 g gravitational field, Soil and Foundations, Vol. 29, No. 1, pp. 105-118.  https://doi.org/10.3208/sandf1972.29.105
  7. Jeong, S. G., Kim, H. Y. and Kim, D. H. (2023), Earthquake Amplification for Various Multi-Layer Ground Models, The Journal of Engineering Geology, Vol. 33, No. 2, pp. 293~305 (In Korean). 
  8. Kim, J. S. and Kang, G. C. (2022), Behavioral characteristics of a single pile according to the relative density of two-layered soil during lateral loads, Journal of Korean Society of Hazard Mitigation, Vol. 22, No. 1, pp. 193~199 (in Korean).  https://doi.org/10.9798/KOSHAM.2022.22.1.193
  9. Kim, S. H., Ahn, K. K. and Kang, H. S. (2018), Dynamic behavior of group piles according to pile cap embedded in sandy ground, Journal of the Korean geo-environmental society, vol. 19, no. 10, pp. 35~41 (in Korean) 
  10. Lim, H. S. and Joeng, S. S. (2017), Analysis of dynamic behavior of a single pile in dry sand by 1g shaking table test, Journal of The Korean Geotechnical Society, Vol. 33, No. 7, pp. 17~28 (In korean) 
  11. Nguyen, B.N., Tran, N.X., Han, J.T. and Kim, S.R. (2018), Evaluation of the dynamic p-yp loops of pile-supported structures on sloping ground, Bulletin of Earthquake Engineering, Vol. 16, No. 12, pp. 5821~5842.  https://doi.org/10.1007/s10518-018-0428-3
  12. Poulos, H.G. (1971), Behavior of laterally loaded piles:I-single piles, Journal of Soil Mechanics and Foundations Div, ASCE, Vol. 97, No. SM5, pp. 711~731.  https://doi.org/10.1061/JSFEAQ.0001592
  13. Reese, L.C. and Matlock, H.L. (1956), Non-dimensional solutions for laterally loaded piles with soil modulus assumed proportional to depth, Proc., 8th Texas Conf., on Soil Mechanics and Foundation Engineering, Austin, TX, pp. 1~41. 
  14. Tran, N. X., Yoo, B. S. and Kim, S. R. (2020), Dynamic interaction of single and group piles in sloping ground, Journal of the Korean Geotechnical Society, Vol. 36, No. 1, pp. 5~15, (in Korea) 
  15. Yang, E. K. (2009), Evaluation of Dynamic p-y Curves for a Pile in Sand from 1g Shaking Table Tests, Ph. D. Dissertation, Seoul National University, South Korea (In Korean). 
  16. Yang, E. K., Jeong, S. S., Kim, J. H. and Kim, M. M. (2009), Dynamic p-y Backbone Curves from 1g Shaking Table Tests, Proceeding of 88th Transportation Research Board Annual Meeting, Washington, D.C., CD-Rom. 
  17. Yoo, M. T., Choi, J. I., Han, J. T. and Kim, M. M. (2013), Dynamic p-y curves for dry sand from centrifuge tests, Journal of Earthquake Engineering, Vol. 17, pp. 1082~1102.  https://doi.org/10.1080/13632469.2013.801377
  18. Yoon, J. K., Kim, D. S. and Bang, E. S. (2006), Development of site classification system and modification of design response spectra considering geotechnical site characteristics in Korea (I) - Problem statements of the current seismic design code, Journal of Earthquake Engineering, Vol. 10, No. 2, pp. 39~50 (In Korean). https://doi.org/10.5000/EESK.2006.10.2.039