DOI QR코드

DOI QR Code

머신러닝과 공간분석을 활용한 부산시 중심지 체계 및 영향권 분석

Assessment of Busan City Central Area System and Service Area Using Machine Learning and Spatial Analysis

  • 최지윤 (부산대학교 도시공학과) ;
  • 박민영 (부산대학교 도시공학과) ;
  • 강정은 (부산대학교 도시공학과)
  • Ji Yoon CHOI (Dept. of Urban Planning and Engineering, Pusan National University) ;
  • Minyeong PARK (Dept. of Urban Planning and Engineering, Pusan National University) ;
  • Jung Eun KANG (Dept. of Urban Planning and Engineering, Pusan National University)
  • 투고 : 2023.08.31
  • 심사 : 2023.09.13
  • 발행 : 2023.09.30

초록

지자체 차원의 균형발전 계획을 수립하기 위해서는 현 상태의 도시공간구조를 파악해야 한다. 특히 중심지는 균형발전의 핵심 요소이므로 그 위치와 규모를 정확히 판단하는 것이 필요하다. 따라서 본 연구는 부산시를 대상으로 중심지 체계를 식별하고 중심지의 기능을 누릴 수 있는 중심지의 영향권에서 소외되는 지역을 도출하고자 하였다. 중심지 체계 식별을 위해 부산시 전역에 대해 4개 지표(지가, 생활인구, 카드 소비, 상업 용도 건축물)를 활용하여 중심지 면적 지수를 산출하고 Getis-Ord Gi*와 DBSCAN 분석을 수행하였다. 식별된 중심지에 대해서는 위계를 구분하고 위계별 네트워크 분석을 통해 영향권을 도출하였다. 분석 결과 중심지는 서면, 중앙, 연산, 장산, 해운대, 덕천, 동래, 대연, 사상, 부산대, 부산역, 사직 총 12곳으로 나타났다. 중심지 영향권 소외지역은 대부분 동부산권역과 서부산권역에서 나타났으며 노후 공업지역과 주거지역, 신도시 일부에서도 도출되었다. 본 연구는 기존 연구에서 다루지 않았던 머신러닝 방법론을 적용하여 기존 계획상 중심지와 실제 데이터 간 차이를 밝히고 중심지 위치와 소외지역을 식별하였다는 점에서 의의가 있다.

In order to establish a balanced development plan at the local government level, it is necessary to understand the current urban spatial structure. In particular, since the central area is a key element of balanced development, it is necessary to accurately identify its location and size. Therefore, the purpose of this study was to identify the central area system for Busan and to derive underprivileged areas that were alienated from the service areas where the functions of the central area could be used. To identify the central area system, four indicators(De facto Population, Land Price, Commercial Buildings, Credit Card Consumption) were used to calculate the central area index, and Getis-Ord Gi* and DBSCAN analysis were performed. Next, the hierarchy of the central areas were classified and the service areas were derived through network analysis by using it. As a result of the analysis, a total of 12 central areas were found in Seomyeon, Jungang, Yeonsan, Jangsan, Haeundae, Deokcheon, Dongnae, Daeyeon, Sasang, Pusan National University, Busan Station, and Sajik. Most of the underprivileged areas affected by the central area appeared in the Eastern area of Busan and the Western area of Busan, and were derived from old industrial areas, residential areas, and some new cities. Based on the results of the study, we can find three meanings. First, we have made a new attempt to apply a machine learning methodology that has not been covered in previous studies. Second, our data show the difference between the actual data and the existing planned central areas. Third, we not only found the location of the central areas, but also identified the underprivileged areas.

키워드

과제정보

본 연구는 환경부 「기후변화특성화대학원사업」의 지원과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C1011977)

참고문헌

  1. Busan City. 2023. 2040 Busan Comprehensive City Plan
  2. Busan Development Institute. 2019. Report of Busan Metropolitan City Balanced Urban Development Master Plan.
  3. Carpio-Pinedo, J., Romanillos, G., Aparicio, D., Martin-Caro, M. S. H., Garcia-Palomares, J. C., and Gutierrez, J. 2022. Towards a new urban geography of expenditure: Using bank card transactions data to analyze multi-sector spatiotemporal distributions. Cities, 131, 103894.
  4. D.H. Lee and Park, D.H. 2011. A Study on Urban Spatial Structure and Establishment of the Central Place in Busan. Journal of the Korean Data Analysis Society 13(1):365-375.
  5. Ha, J.H. and Lee, S.G. 2016. A Study onf the Desigantion of Living Zones by Its Spatial Hierarchy Using OD Data and Community Detection Technique. Journal of Korea Planning Association 51(6):79-88. https://doi.org/10.17208/jkpa.2016.11.51.6.79
  6. Hah J.M., Kim, K.J., Yun, J.S., and Lee, S.G. 2021. Classification of Local Living Zones and Analysis of Their Characteristics by the Service Area Size of Convenient Service Facilities Calculated on the Basis of Pedestrian Network:Using Seoul's Libraries as an Example. Journal of Korea Planning Association 56(3):6-48.
  7. Hur, Y.K. and Lee, J.Y. 2009. The Transformation of Spatial Structure: Employment, Population, and Land Value in Ulsan. Journal of Korea Planning Association 44(2):111-121.
  8. Hwang, E.C. and Yuh, H.K. 2013. The Land Use Characteristics and their Forming of the Existing and New Central Districts in Daejeon Metropolitan City. Journal of Korean Regional Development Association 25(3):109-128.
  9. Hwang, H.S., Choi, J.Y., Kang, J.E. 2023. Analysis of regional type according to spatial correspondence between heat wave vulnerable areas and health damage occurance. Journal of Korean Association of Geographic Information Studies 26(1):89-113.
  10. Jeon, B.Y., LIU SIPEI, Hong, Y.K. and Lee, M.H. 2022. Analysis of Urban Infrastructure Service Areas in the Mid-Living Areas of Cheongju City Considering the Characteristics of Local Traffic: Focusing on the Network Analysis Method. Journal of the korea Academia-Industrial cooperation Society 23(1):704-716. https://doi.org/10.5762/KAIS.2022.23.1.704
  11. Kim, B.W. 2022. Clustering analysis of torsion angles in the backbone of proteins by utilizing DBSCAN algorithm. Journal of the Korean Data & Information Science Society 33(6):951-962. https://doi.org/10.7465/jkdi.2022.33.6.951
  12. Kim, H.Y., Kim, J.S., Lee, S.H. 2012. A Spatial Statistical Approach to the Delimitation of CBD. Journal of the Korean Association of Geographic Information Studies 5(4):42-54. https://doi.org/10.11108/kagis.2012.15.4.042
  13. Kim, H.J. 2023. A Study on the Concept and Application of the 15-Minute City. Journal of the Korea Academia-Industrial cooperation Society 24(6):134-139. https://doi.org/10.5762/KAIS.2023.24.6.134
  14. Kim, S.J. 2020. Setting Boundary of Downtowns and Comparing downtown Characteristics in Busan. .M.S. Thesis, Univ. of Busan, Busan, Korea.
  15. Kim, T.K. and Chung, J.H. 2014. A Study on the Indentification of Accident Hot Spots Using DBSCAN - Focused on Gyeong-Bu Expressway. Journal of Transport Research 21(3):55-63.
  16. Kim, W.K. and Lee, M.Y. 2002. The Land Value Patterns of CBD in Gimhae City, Korea. Journal of the Korean Urban Geographical Society 5(1):15-33.
  17. Korea Planning Association. 2014. Site Planning. Boseongkag., Seoul.
  18. Korea Planning Association. 2015. Land use Planning. In: Landuse and urban economic theory. Bosunggak Publishing Co., Seoul, pp.56-60.
  19. Korea Planning Association. 2018. National & Regional Planning. In: Theory of spatial structure. Bosungkag, Seoul, pp.131-150
  20. Korean Law Information Center. 2023. Special Act on Local Autonomy and Decentralization, and Balanced Local Development. https://www.law.go.kr/lsSc.do?menuId=1&subMenuId=15&tabMenuId=81&query=%EC%A7%80%EB%B0%A9%EC%9E%90%EC%B9%98%EB%B6%84%EA%B6%8C#liBgcolor1. (Accessed August 10, 2023)
  21. Kruger, S.G. 2012. Delimiting the postmodern urban center: An analysis of urban amenity clusters in Los Angeles. M.S. Dissertation to University of Southern California.
  22. Lee, H.W. 2001. An Estimation of Land use by Land Values in the Great Cities - focusing on five great cities -. Journal of the Korean Association of Regional Geographers 7(1):83-95.
  23. Lee, H.Y. and Shim, J.H. 2011. GIS Geographic Information Systems: The Theory and Practice. Beopmunsa., Paju.
  24. Lee, Hae Bin. 2023. A Study on the Status and Characteristics of the 15-minute City in Seoul using Pedestrian Network Analysis - Focused on the Supply and Demand of Local Living Service Facilities by Age group-. M.S. Thesis, Univ. of Seoul, Seoul, Korea.
  25. Lee, K.K., Lim, C.S. and Yoon S.W. 2001. A Study on the Establishment of the System of Centers and their Characteristics by Level in Busan. Journal of Korea Planning Association 36(3):69-85.
  26. Lee, S. and Choi, S.H. 2020. Analysis of the Impact of COVID-19 on Local Market Areas Using Credit Card Big Data: A Case of Suwon. Space and Environment 30(3):167-208 https://doi.org/10.19097/KASER.2020.30.3.167
  27. Lee, S.H., 2022. Impact of particulate matter and urban spatial characteristics on urban vitality using spatioetmporal big data. Cities 131
  28. Lee, S.K. and Sung, H.G. 2018. Identifying the Spatial Transformation and Proliferation for the Seoul Retail Trade Areas-Focusing on Gentrificated Areas in the Seoul Metropolitan City-. SH Urban Research & Insight 8(3):69-82. https://doi.org/10.26700/shuri.2018.12.8.3.69
  29. Nam, Y.W. 1976. Delimitation of the CBD by Land Values and Analysis of Land Value Distribution Patterns - A case of Seoul City-. Journal of Geography Education 6:51-78.
  30. Moreno, C., Allam, Z., Chabaud, D., Gall, C., and Pratlong, F. 2021. Introducing the "15-Minute City": Sustainability, resilience and place identity in future post-pandemic cities. Smart Cities 4(1):93-111. https://doi.org/10.3390/smartcities4010006
  31. Park, J.E. 2018. The Distribution of Land Values and Urban Spatial Structure in Busan, Korea. Ph.D. Thesis, Univ. of Busan, Busan, Korea.
  32. Park, S.P. 2022.'15-Minute City in Busan' Construction Method for World Leadership. BDI Policy Focus 407.
  33. Park, S.P., Lee, D.H., Lee, S.G., Kim, Y.S. 2022. A Study on Revamp of Busan Living World for Realization of Spatial Democratism. BDI Report.
  34. Pavlis, M., Dolega, L., and Singleton, A. 2018. A modified DBSCAN clustering method to estimate retail center extent. Geographical Analysis 50(2):141-161. https://doi.org/10.1111/gean.12138
  35. Raschka, S and Mirjalili, V. 2019. Machine Learning textbook with Python, Scikit-learn, TensorFlow. Gilbot, Seoul.
  36. Son, S.W. and Ahn, T.M. 2013. Sensitivity Analysis on the Population within and outside of the Urban Park Service Areas -Focused on Daegu Metropolitan City Neighborhood Parks and Resident Registration Number Data-. Journal of the Korean Institute of Landscape Architecture 41 (5):9-18. https://doi.org/10.9715/KILA.2013.41.5.009
  37. Tu, X., Fu, C., Huang, A., Chen, H., and Ding, X. 2022. DBSCAN spatial clustering analysis of urban"Production-Living-Ecological" space based on POI data: a case study of central urban Wuhan, China. International Journal of Environmental Research and Public Health 19(9):5153.
  38. Uhm, J.H. and Yuh, H.K. 2015. A study on the Land Use Characteristics and Spatial Boudnary-setting of the New and Old Central Districts in Busan Metropolitan City. ournal of Korean Regional Development Association 27(5):209-228.
  39. W. Christaller. 1966. Central Places in Southern Germany. Prentice-hall, INC. New Jersey, USA.
  40. Xiao, T., Wan, Y., Jin, R., Qin, J., and Wu, T. 2022. Integrating Gaussian Mixture Dual-Clustering and DBSCAN for Exploring Heterogeneous Characteristics of Urban Spatial Agglomeration Areas. Remote Sensing 14(22):5689.
  41. Yim, Y.S. 2015. The Locational Characteristics of Central Area in Seoul Metropolitan Area, Ph.D. Thesis, Gachen University, Seongnam-si, Gyeonggi-do, Korea.
  42. Yoon, C.H., Kim, J.S. and Park, B.J. 2003. A Study on Commercial Agglomeration and Change of Hierarchy of Commercial Centers in Busan. Journal of the Korean Urban Management Association 16(2):1-25