DOI QR코드

DOI QR Code

Analytical study on seepage behavior of a small-scale capillary barrier system under lateral no-flow condition

  • Byeong-Su Kim (Department of Civil & Environmental Engineering, Dankook University)
  • Received : 2022.06.11
  • Accepted : 2022.08.16
  • Published : 2023.10.10

Abstract

The model production for large-scale (lateral length ≥ 2.0 m) capillary barrier (CB) model tests is time and cost-intensive. To address these limitations, the framework of a small-scale CB (SSCB) model test under the lateral no-flow condition has been established. In this study, to validate the experimental methodology of the SSCB model test, a series of seepage analyses on the SSCB model test and engineered slopes in the same and additional test conditions was performed. First, the seepage behavior and diversion length (LD) of the CB system were investigated under three rainfall conditions. In the seepage analysis for the engineered slopes with different slope angles and sand layer thicknesses, the LD increased with the increase in the slope angle and sand layer thickness, although the increase rate of the LD with the sand layer thickness exhibited an upper limit. The LD values from the seepage analysis agreed well with the results estimated from the laboratory SSCB mode test. Therefore, it can be concluded that the experimental methodology of the SSCB model test is one of the promising alternatives to efficiently evaluate the water-shielding performance of the CB system for an engineered slope.

Keywords

Acknowledgement

The present research was supported by the research fund of Dankook University in 2022.

References

  1. Aubertin, M., Cifuentes, E., Apithy, S.A., Bussiere, B., Molson, J. and Chapuis, R.P. (2009), "Analyses of water diversion along inclined covers with capillary barrier effects", Can. Geotech. J., 46(10), 1146-1164. https://doi.org/10.1139/T09-050.
  2. Benson, C.H. and Khire, M.V. (1995), "Earthern covers for semiarid and arid environments", Landfill closures. Geotech. Spec. Pub., 53, 201-217.
  3. Bussiere, B., Aubertin, M. and Chapuis, R.P. (2002), "A laboratory set up to evaluate the hydraulic behavior of inclined capillary barriers", Proceedings of the international conference on physical modelling in geotechnics, St. John's, Nfld., Canada, 10-12 July 2002.
  4. Bussiere, B., Aubertin, M. and Chapuis, R.P. (2003), "The behavior of inclined covers used as oxygen barriers", Can. Geotech. J., 40(3), 512-535. https://doi.org/10.1139/t03-001.
  5. Deng, D., Lu, K. and Li, L. (2019), "LE analysis on unsaturated slope stability with introduction of nonlinearity of soil strength", Geomech. Eng., 19(2), 179-191. https://doi.org/10.12989/gae.2019.19.2.179.
  6. Fredlund, D.G. and Xing, A. (1994), "Equations for the soil-water characteristic curve", Can. Geotech. J., 31(4), 521-532. https://doi.org/10.1139/t94-061.
  7. Fredlund, D.G., Xing, A. and Huang, S. (1994), "Predicting the permeability function for unsaturated soils using the soil-water characteristic curve", Can. Geotech. J., 31(4), 533-546. https://doi.org/10.1139/t94-062.
  8. GEO-SLOPE International Ltd. (2004), Computer Program SEEP/W for Finite Element Seepage Analysis, User's Guide, Calary, Alta, Canada.
  9. Hey, C. and Simms, P. (2021), "Preliminary assessment of biosolids in covers with capillary barrier effects", Eng. Geol., 280, 105973. https://doi.org/10.1016/j.enggeo.2020.105973.
  10. Hill, D.E. and Parlange, J.Y. (1972), "Wetting front instability in layered soils", Soil Sci. Soc. Am. J., 36(5), 697-702. https://doi.org/10.2136/sssaj1972.03615995003600050010x.
  11. Kampf, M. and Montenegro, H. (1997), "On the performance of capillary barriers as landfill cover", Hydrol. Earth Syst. Sci., 1(4), 925-930. https://doi.org/10.5194/hess-1-925-1997.
  12. Khire, M.V., Benson, C.H. and Bosscher, P.J. (2000), "Capillary barriers: Design variables and water balance", J. Geotech. Geoenviron. Eng., 126(8), 695-708. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:8(695).
  13. Kim, B.S. (2021), "Evaluation of the water shielding performance of a capillary barrier system through a small-scale model test", Appl. Sci.-Basel, 11(11), 5231. https://doi.org/10.3390/app11115231.
  14. Kim, Y. and Jeong, S. (2017), "Modeling of shallow landslides in an unsaturated soil slope using a coupled model", Geomech. Eng., 13(2), 353-370. https://doi.org/10.12989/gae.2017.13.2.353.
  15. Kung, K.J.S. (1990), "Preferential flow in a sandy vadose soil: 2. Mechanism and implications", Geoderma, 46(1-3), 59-71. https://doi.org/10.1016/0016-7061(90)90007-V.
  16. Li, Y., Satyanaga, A. and Rahardjo, H. (2021), "Characteristics of unsaturated soil slope covered with capillary barrier system and deep-rooted grass under different rainfall patterns", Int. Soil Water Conserv. Res., 9(3), 405-418. https://doi.org/10.1016/j.iswcr.2021.03.004.
  17. Mancarella, D., Doglioni, A. and Simeone, V. (2012), "On capillary barrier effects and debris slide triggering in unsaturated layered covers", Eng. Geol., 147, 14-27. https://doi.org/10.1016/j.enggeo.2012.07.003.
  18. Matsumoto, K., Kobayashi, K., Morii, T. and Nakajusa, S. (2016), "Evaluation of diversion length of the capillary barrier with nonflatness of regular sine wave shape between sand and gravel layers", Jpn. Geotech. J., 11(2), 305-313. (In Japanese) https://doi.org/10.3208/jgs.11.139.
  19. Miyazaki, T. (1988), "Water flow in unsaturated soil in layered slopes", J. Hydrol., 102(1-4), 201-214. https://doi.org/10.1016/0022-1694(88)90098-4
  20. Mohamed, A.M., Shooshpasha, I. and Ong, R.N. (1997), "Diffusion of metal ions in frozen capillary barriers", Eng. Geol., 47(1-2), 1-15. https://doi.org/10.1016/0022-1694(88)90098-4.
  21. Morel-Seytoux, H.J. (1993), "Dynamic perspective on the capillary barrier effect at the interface of an upper fine layer with a lower coarse layer", Proceedings of the Engineering Hydrology, ASCE: Reston, VA, USA.
  22. Morris, C.E. and Stormont, J.C. (1998), "Evaluation of numerical simulations of capillary barrier field tests", Geotech. Geol. Eng., 16(3), 201-213. https://doi.org/10.1023/A:1008853710339.
  23. Ng, C.W., Liu, J., Chen, R. and Xu, J. (2014), "Physical and numerical modeling of an inclined three-layer (silt/gravelly sand/clay) capillary barrier cover system under extreme rainfall", Waste Manage., 38, 210-221. https://doi.org/10.1016/j.wasman.2014.12.013.
  24. Nicholson, R.V., Gillham, R.W., Cherry, J.A. and Reardon, E.J. (1989), "Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers", Can. Geotech. J., 26(1), 1-8. https://doi.org/10.1139/t89-001.
  25. Oldenburg, C.M. and Pruess, K. (1993), "On numerical modeling of capillary barriers", Water Resour. Res., 29(4), 1045-1056. https://doi.org/10.1029/92WR02875.
  26. Parent, S.E. and Cabral, A. (2006), "Design of inclined covers with capillary barrier effect", Geotech. Geol. Eng., 24(3), 689-710. https://doi.org/10.1007/s10706-005-3229-9.
  27. Rahardjo, H., Santoso, V.A., Leong, E.C., Ng, Y.S. and Hua, C.J. (2011), "Numerical analyses and monitoring performance of residual soil slopes", Soils Found., 51(3), 471-482. https://doi.org/10.3208/sandf.51.471.
  28. Rasmuson, A. and Eriksson, J.C. (1986), "Capillary barriers in covers for mine waste dumps", National Swedish Environmental Protection Board, 3307.
  29. Ross, B. (1990), "The diversion capacity of capillary barriers", Water Resour. Res., 26(10), 2625-2629. https://doi.org/10.1029/WR026i010p02625.
  30. Satyanaga, A., Moon, S.W. and Kim, J.R. (2022). "Stability analyses of dual porosity soil slope", Geomech. Eng., 28(1), 77-87. https://doi.org/10.12989/gae.2022.28.1.077.
  31. Steenhuis, T.S., Parlange, J.Y. and Kung, K.S. (1991), "Comment on 'The diversion capacity of capillary barriers' by Benjamin Ross", Water Resour. Res., 27(8), 2155-2156. https://doi.org/10.1029/91WR01366.
  32. Tami, D., Rahardjo, H., Leong, E.C. and Fredlund, D.G. (2004), "A physical model of sloping capillary barriers", Geotech. Test. J., 27(2), 11-27. https://hdl.handle.net/10356/101480. 10356/101480
  33. Tang, J., Taro, U., Huang, D., Xie, J. and Tao, S. (2020), "Physical Model Experiments on Water Infiltration and Failure Modes in Multi-Layered Slopes under Heavy Rainfall", Appl. Sci.-Basel, 10(10), 3458. https://doi.org/10.3390/app10103458.
  34. Walter, M.T., Kim, J.S., Steenhuis, T.S., Parlange, J.Y., Heilig, A., Braddock, R.D., Selker, J.S. and Boll, J. (2000), "Funneled flow mechanisms in a sloping layered soil: Laboratory investigation", Water Resour. Res., 36(4), 841-849. https://doi.org/10.1029/1999WR900328.
  35. Warrick, A.W., Wierenga, P.J. and Pan, L. (1997), "Downward water flow through sloping layers in the vadose zone: Analytical solutions for diversions". J. Hydrol., 192, 321-337. https://doi:10.1016/S0022-1694(96)03080-6.
  36. Zhan, T.L., Li, H., Jia, G.W., Chen, Y.M. and Fredlund, D.G. (2014), "Physical and numerical study of lateral diversion by three-layer inclined capillary barrier covers under humid climatic conditions", Can. Geotech. J., 51(12), 1438-1448. https://doi.org/10.1139/cgj-2013-0449.
  37. Zhai, Q., Rahardjo, H. and Satyanaga, A. (2017), "Uncertainty in the estimation of hysteresis of soil-water characteristic curve", Environ. Geotech., 6(4), 204-213. https://doi.org/10.1680/jenge.17.00008.
  38. Zhai, Q., Rahardjo, H., Satyanaga, A., Dai, G. and Du, Y. (2020), "Estimation of the wetting scanning curves for sandy soils", Eng. Geol., 272, 105635. https://doi.org/10.1016/j.enggeo.2020.105635.